Aphids are a species rich group comprising many important pests. However, species identification can be very difficult for aphids due to their morphological ambiguity. DNA barcoding has been widely adopted for rapid and reliable species identification as well as cryptic species detection. In this study, we investigated cryptic diversity in the subfamily Calaphidinae (Hemiptera: Aphididae) based on 899 sequences of cytochrome c oxidase I (COI) for 115 morphospecies (78 species collected in this study and sequences of 73 species downloaded from Genbank). Among these 115 morphospecies, DNA barcoding results of 90 (78.3%) species were identical to results of morphological identification. However, 25 (21.7%) morphospecies showed discrepancies between DNA barcoding and traditional taxonomy. Among these 25 discordances, a total of 15 cryptic species were identified from 12 morphospecies. We also found three morphologically distinct species pairs that sharing DNA barcoding. Based on molecular operational taxonomic unit (MOTU) estimation, we discussed on species delimitation threshold value for these taxa. Our findings confirm that Calaphidinae has high cryptic diversity even though aphids are relatively well-studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407777 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176582 | PLOS |
Nat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFMycoKeys
January 2025
Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan University of the Punjab Lahore Pakistan.
During macrofungal surveys in 2019-2024, several specimens belonging to the family Psathyrellaceae were collected from the bed of the Indus River, Punjab, Pakistan. Phylogenetic analyses, based on ITS, LSU, and tef-1α sequences and morpho-anatomical study, confirmed the novelty and placement of three taxa in the genus . They are described as , , and .
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!