How organisms sense and respond to noxious temperatures is still poorly understood. Further, the mechanisms underlying sensitization of the sensory machinery, such as in patients experiencing peripheral neuropathy or injury-induced sensitization, are not well characterized. The genetically tractable Drosophila model has been used to study the cells and genes required for noxious heat detection, which has yielded multiple conserved genes of interest. Little is known however about the cells and receptors important for noxious cold sensing. Although, Drosophila does not survive prolonged exposure to cold temperatures (≤10 ºC), and will avoid cool, preferring warmer temperatures in behavioral preference assays, how they sense and possibly avoid noxious cold stimuli has only recently been investigated. Here we describe and characterize the first noxious cold (≤10 ºC) behavioral assay in Drosophila. Using this tool and assay, we show an investigator how to qualitatively and quantitatively assess cold nociceptive behaviors. This can be done under normal/healthy culture conditions, or presumably in the context of disease, injury or sensitization. Further, this assay can be applied to larvae selected for desired genotypes, which might impact thermosensation, pain, or nociceptive sensitization. Given that pain is a highly conserved process, using this assay to further study thermal nociception will likely glean important understanding of pain processes in other species, including vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564461 | PMC |
http://dx.doi.org/10.3791/55568 | DOI Listing |
Life (Basel)
December 2024
College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.
View Article and Find Full Text PDFPain
November 2024
Center for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka, India.
Pain
September 2024
Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat.
View Article and Find Full Text PDFJ Pain
November 2024
Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Denmark; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Denmark. Electronic address:
In the Thermal Grill Illusion (TGI), the spatial alternation of non-noxious warm and cool temperatures elicits burning sensations that resemble the presence of noxious stimuli. Previous research has largely relied on the use of specific temperature values (i.e.
View Article and Find Full Text PDFElife
November 2024
Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!