A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Likelihood-based parameter estimation and comparison of dynamical cognitive models. | LitMetric

Dynamical models of cognition play an increasingly important role in driving theoretical and experimental research in psychology. Therefore, parameter estimation, model analysis and comparison of dynamical models are of essential importance. In this article, we propose a maximum likelihood approach for model analysis in a fully dynamical framework that includes time-ordered experimental data. Our methods can be applied to dynamical models for the prediction of discrete behavior (e.g., movement onsets); in particular, we use a dynamical model of saccade generation in scene viewing as a case study for our approach. For this model, the likelihood function can be computed directly by numerical simulation, which enables more efficient parameter estimation including Bayesian inference to obtain reliable estimates and corresponding credible intervals. Using hierarchical models inference is even possible for individual observers. Furthermore, our likelihood approach can be used to compare different models. In our example, the dynamical framework is shown to outperform nondynamical statistical models. Additionally, the likelihood based evaluation differentiates model variants, which produced indistinguishable predictions on hitherto used statistics. Our results indicate that the likelihood approach is a promising framework for dynamical cognitive models. (PsycINFO Database Record

Download full-text PDF

Source
http://dx.doi.org/10.1037/rev0000068DOI Listing

Publication Analysis

Top Keywords

parameter estimation
12
dynamical models
12
likelihood approach
12
dynamical
8
comparison dynamical
8
dynamical cognitive
8
models
8
cognitive models
8
model analysis
8
approach model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!