The kidneys have a key role in the homeostasis of water excretion and reabsorption. Water channels, particularly aquaporin-2 (AQP2), are important proteins in water homeostasis in the body through the short‑term and long-term regulation of water permeability. Wiryeongtang (WRT) is a well-known traditional oriental medicine, which is used for the treatment of chronic edema and dysuresia. The aim of the present study was to evaluate the inhibitory effect of WRT on the hypertonicity-induced expression of AQP2 in the inner medullary collecting duct cell line (IMCD‑3). Western blotting, reverse transcription‑polymerase chain reaction and immunofluorescence analysis were performed to determine the effect of WRT under hypertonic stress. WRT attenuated the 175 mM NaCl hypertonic stress‑induced increases in protein and mRNA levels of AQP2 and apical membrane insertion in a concentration‑dependent manner. However, no differences were observed in the levels of AQP1, AQP3 or AQP4 between the hypertonic stress and WRT groups. WRT attenuated the hypertonicity-induced phosphorylation of glucocorticoid-inducible protein kinase 1. In addition, the mRNA expression of tonicity‑responsive enhancer binding protein was attenuated by WRT under hypertonic stress. Pretreatment with WRT also decreased the hypertonic stress‑induced expression of AQP2, as with KT5720, a protein kinase A inhibitor. These results provided evidence of the beneficial effect of the traditional formula WRT in regulating water balance in hypertonic stress of the renal collecting ducts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2017.6296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!