[Severe accidental hypothermia : Treatment using an intravascular temperature management catheter].

Med Klin Intensivmed Notfmed

Abteilung für Kardiologie, Robert-Bosch-Krankenhaus, Auerbachstraße 110, 70376, Stuttgart, Deutschland.

Published: November 2017

Different techniques have been reported for the treatment of severe accidental hypothermia. In this case, we successfully used an intravascular catheter temperature management system which has been developed to induce reversible therapeutic hypothermia in patients following resuscitation. In our patient, the initial core temperature was 26.7 °C, and the temperature management system allowed for successful rewarming without complications with a maximum rate of about 1 °C/h.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00063-017-0291-zDOI Listing

Publication Analysis

Top Keywords

temperature management
12
accidental hypothermia
8
management system
8
[severe accidental
4
hypothermia treatment
4
treatment intravascular
4
temperature
4
intravascular temperature
4
management catheter]
4
catheter] techniques
4

Similar Publications

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Responses of soil respiration and its temperature sensitivity to nitrogen and phosphorus depositions in a riparian zone.

J Environ Manage

January 2025

Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.

Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.

View Article and Find Full Text PDF

Eco-nano solutions for rapid phosphorus recovery: Closing the loop for sustainable agriculture.

Sci Total Environ

January 2025

Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark. Electronic address:

Efficient phosphorus (P) removal from agricultural drainage is crucial for making its removal and recovery economically viable and operationally feasible. This study evaluated cost-effective, green-synthesized nanoparticles (using grass extract) for rapid and efficient P adsorption. Batch experiments were conducted to assess the effect of pH, P concentration, adsorbent dosage, contact time, and temperature on P adsorption.

View Article and Find Full Text PDF

Dengue, a climate-sensitive mosquito-borne viral disease, is endemic in many tropical and subtropical areas, with Southeast Asia bearing the highest burden. In China, dengue epidemics are primarily influenced by imported cases from Southeast Asia. By integrating monthly maximum temperature and precipitation from Southeast Asia and local provinces in China, we aim to build models to predict dengue incidence in high-risk areas of China.

View Article and Find Full Text PDF

Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities.

Environ Sci Technol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!