Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a odel-nabled ene earch (MEGS) approach that (i) identifies metabolic functions either missing from an organism's genome annotation or incorrectly assigned to an ORF by using discrepancies between metabolic model predictions and experimental culturing data; (ii) designs functional selection experiments for these specific metabolic functions; and (iii) selects a candidate gene(s) responsible for these functions from a genomic library and directly interrogates this gene's function experimentally. To discover gene functions, MEGS uses genomic functional selections instead of relying on correlations across large experimental datasets or sequence similarity as do other approaches. When applied to the bioluminescent marine bacterium , MEGS successfully identified five genes that are responsible for four metabolic and transport reactions whose absence from a draft metabolic model of caused inaccurate modeling of high-throughput experimental data. This work demonstrates that MEGS provides a rapid and efficient integrated computational and experimental approach for annotating metabolic genes, including those that have previously been uncharacterized or misannotated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473228 | PMC |
http://dx.doi.org/10.1074/jbc.M116.763193 | DOI Listing |
STAR Protoc
January 2025
National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!