AI Article Synopsis

  • The study investigates how aeroallergens from a specific fungus affect ion transport and mucociliary function in human airway cells, particularly in asthma patients.
  • Apical exposure to the allergens increases anion secretion, which is inhibited by blockers of key channels, suggesting a link between Ca uptake and ion transport mechanisms.
  • Moreover, the allergens induce reactive oxygen species (ROS), influencing ATP release and tight junction resistance, highlighting oxidative stress's role in mucosal function and potential asthma exacerbation.

Article Abstract

Aeroallergens produced by can elicit life-threatening exacerbations of asthma in patients sensitized to this fungus. In this study, the effect of on ion transport mechanisms underlying mucociliary clearance and airway epithelial barrier function was investigated in human airway epithelial cells. Apical exposure to induced an increase in anion secretion that was inhibited by blockers of CFTR and Ca-activated Cl channels. Stimulation of anion secretion was dependent on Ca uptake from the apical solution. exposure also produced an increase in reactive oxygen species (ROS) that was blocked by pretreatment with the oxidant scavenger glutathione (GSH). GSH and the NADPH oxidase inhibitor/complex 1 electron transport inhibitor diphenylene iodonium chloride (DPI) blocked ATP release and the increase in intracellular [Ca] evoked by also decreased transepithelial resistance, and a portion of this effect was dependent on the increase in ROS. However, the -induced increase in unidirectional dextran (molecular mass = 4,000 Da) flux across the epithelium could not be accounted for by increased oxidative stress. These results support the conclusion that oxidative stress induced by was responsible for regulating Ca-dependent anion secretion and tight junction electrical resistance that would be expected to affect mucociliary clearance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538799PMC
http://dx.doi.org/10.1152/ajpcell.00043.2017DOI Listing

Publication Analysis

Top Keywords

anion secretion
16
airway epithelial
12
oxidative stress
12
barrier function
8
mucociliary clearance
8
increase
5
anion
4
epithelial anion
4
secretion
4
secretion barrier
4

Similar Publications

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

The therapeutic benefit of the oral adsorbent drug AST-120 in chronic kidney disease (CKD) is related to an indoxyl sulfate (IS)-lowering action. Diabetes and dyslipidemia might worsen kidney damage in CKD. However, it is not known whether AST-120 influences lipid abnormalities as well as renal function in patients with CKD and diabetes.

View Article and Find Full Text PDF

Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench-Scale Study.

Toxins (Basel)

December 2024

Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.

The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.

View Article and Find Full Text PDF

Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!