A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ablation of S1P receptor protects mouse soleus from age-related drop in muscle mass, force, and regenerative capacity. | LitMetric

We investigated the effects of S1P deficiency on the age-related atrophy, decline in force, and regenerative capacity of soleus muscle from 23-mo-old male (old) mice. Compared with muscle from 5-mo-old (adult) mice, soleus mass and muscle fiber cross-sectional area (CSA) in old wild-type mice were reduced by ~26% and 24%, respectively. By contrast, the mass and fiber CSA of soleus muscle in old S1P-null mice were comparable to those of adult muscle. Moreover, in soleus muscle of wild-type mice, twitch and tetanic tensions diminished from adulthood to old age. A slowing of contractile properties was also observed in soleus from old wild-type mice. In S1P-null mice, neither force nor the contractile properties of soleus changed during aging. We also evaluated the regenerative capacity of soleus in old S1P-null mice by stimulating muscle regeneration through myotoxic injury. After 10 days of regeneration, the mean fiber CSA of soleus in old wild-type mice was significantly smaller (-28%) compared with that of regenerated muscle in adult mice. On the contrary, the mean fiber CSA of regenerated soleus in old S1P-null mice was similar to that of muscle in adult mice. We conclude that in the absence of S1P, soleus muscle is protected from the decrease in muscle mass and force, and the attenuation of regenerative capacity, all of which are typical characteristics of aging.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00027.2017DOI Listing

Publication Analysis

Top Keywords

regenerative capacity
16
soleus muscle
16
wild-type mice
16
s1p-null mice
16
muscle
12
mice
12
adult mice
12
fiber csa
12
soleus
11
muscle mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!