Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.

Biophys J

Department of Physics and Astronomy, Rice University, Houston, Texas. Electronic address:

Published: April 2017

The bacterial membrane represents an attractive target for the design of new antibiotics to combat widespread bacterial resistance. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. Despite intense study of AMPs on model membranes, we do not know how well the mechanism of attack translates to real biological membranes. To that end, we have characterized the attack of AMPs on Escherichia coli cytoplasmic membranes and directly compared this action to model membranes. AMPs induce membrane permeability in E. coli spheroplasts or giant unilamellar vesicles (GUVs) under well-defined concentrations of AMPs and fluorescent molecules. The action of AMPs on spheroplasts is unique in producing an intracellular fluorescence intensity time curve that increases in a sigmoidal fashion to a steady state. This regular pattern is reproducible by melittin, LL37, and alamethicin but not by CCCP or daptomycin, agents known to cause ion leakage. Remarkably, a similar pattern was also reproduced in GUVs. Indeed the steady-state membrane permeability induced by AMPs is quantitatively the same in spheroplasts and GUVs. There are, however, interesting dissimilarities in details that reveal differences between bacterial and lipid membranes. Spheroplast membranes are permeabilized by a wide range of AMP concentrations to the same steady-state membrane permeability. In contrast, only a narrow range of AMP concentrations permeabilized GUVs to a steady state. Tension in GUVs also influences the action of AMPs, whereas the spheroplast membranes are tensionless. Despite these differences, our results provide a strong support for using model membranes to study the molecular interactions of AMPs with bacterial membranes. As far as we know, this is the first time the actions of AMPs, on bacterial membranes and on model membranes, have been directly and quantitatively compared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406281PMC
http://dx.doi.org/10.1016/j.bpj.2017.03.003DOI Listing

Publication Analysis

Top Keywords

model membranes
16
membranes
13
membrane permeability
12
amps
10
antimicrobial peptides
8
bacterial lipid
8
lipid membranes
8
membranes directly
8
action amps
8
steady state
8

Similar Publications

Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.

Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.

View Article and Find Full Text PDF

Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.

Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.

View Article and Find Full Text PDF

Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances.

Small Methods

January 2025

Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.

Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!