Pyroglutamate-modified amyloid-β (pEAβ) has been described as a relevant Aβ species in Alzheimer's-disease-affected brains, with pEAβ (3-42) as a dominant isoform. Aβ (1-40) and Aβ (1-42) have been well characterized under various solution conditions, including aqueous solutions containing trifluoroethanol (TFE). To characterize structural properties of pEAβ (3-42) possibly underlying its drastically increased aggregation propensity compared to Aβ (1-42), we started our studies in various TFE-water mixtures and found striking differences between the two Aβ species. Soluble pEAβ (3-42) has an increased tendency to form β-sheet-rich structures compared to Aβ (1-42), as indicated by circular dichroism spectroscopy data. Kinetic assays monitored by thioflavin-T show drastically accelerated aggregation leading to large fibrils visualized by electron microscopy of pEAβ (3-42) in contrast to Aβ (1-42). NMR spectroscopy was performed for backbone and side-chain chemical-shift assignments of monomeric pEAβ (3-42) in 40% TFE solution. Although the difference between pEAβ (3-42) and Aβ (1-42) is purely N-terminal, it has a significant impact on the chemical environment of >20% of the total amino acid residues, as revealed by their NMR chemical-shift differences. Freshly dissolved pEAβ (3-42) contains two α-helical regions connected by a flexible linker, whereas the N-terminus remains unstructured. We found that these α-helices act as a transient intermediate to β-sheet and fibril formation of pEAβ (3-42).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406372 | PMC |
http://dx.doi.org/10.1016/j.bpj.2017.03.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!