Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange.

J Am Chem Soc

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China.

Published: May 2017

AI Article Synopsis

  • Covalent organic frameworks (COFs) are advanced porous materials formed through reticular chemistry, but creating complex structures remains challenging due to limited strategies.
  • A new method combining vertex-truncation and a multi-linkage strategy has been developed to successfully design COFs with three types of pores.
  • The synthesis of a "V"-shaped building block led to the formation of two unique COFs, TP-COF-DAB and TP-COF-BZ, confirmed through various analytical techniques, and an innovative transformation between these COFs was achieved for the first time.

Article Abstract

Covalent organic frameworks (COFs) are an emerging class of crystalline porous organic materials which are fabricated via reticular chemistry. Their topologic structures can be precisely predicted on the basis of the structures of building blocks. However, constructing COFs with complicated structures has remained a great challenge, due to the limited strategies that can access to the structural complexity of COFs. In this work, we have developed a new approach to produce COFs bearing three different kinds of pores. The design is fulfilled by the combination of vertex-truncation with multiple-linking-site strategy. On the basis of this design, a "V"-shaped building block carrying two aldehyde groups on the end of each branch has been synthesized. Condensation of it with 1,4-diaminobenzene or benzidine leads to the formation of two triple-pore COFs, TP-COF-DAB and TP-COF-BZ, respectively. The topological structures of the triple-pore COFs have been confirmed by PXRD studies, synchrotron small-angle X-ray scattering (SAXS) experiments, theoretical simulations, and pore size distribution analyses. Furthermore, for the first time, an in situ COF-to-COF transformation has also been achieved by heating TP-COF-BZ with 1,4-diaminobenzene under solvothermal condition, which leads to the formation of TP-COF-DAB via in situ replacing the benzidine linkers in TP-COF-BZ with 1,4-diaminobenzene linkers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b02303DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic frameworks
8
bearing three
8
three kinds
8
kinds pores
8
cof-to-cof transformation
8
leads formation
8
triple-pore cofs
8
tp-cof-bz 14-diaminobenzene
8
cofs
6

Similar Publications

Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode.

ACS Sens

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay.

View Article and Find Full Text PDF

Three-dimensional covalent organic frameworks (3D COFs), a class of highly porous crystalline polymers, have exhibited great potentials in many applications. However, the reported topologies of 3D COFs have been limited to high-symmetry crystal systems, which significantly hindered the development of such functional materials. Herein, we demonstrate the first construction of four highly crystalline orthorhombic 3D COFs with an unprecedented fmj topology, based on judiciously choosing rotatable monomers.

View Article and Find Full Text PDF

PEG-PLGA nanoparticles deposited in and .

J Pharm Anal

December 2024

Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.

In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.

View Article and Find Full Text PDF

Covalent organic frameworks are a novel class of porous polymers, notable for their crystalline structure, intricate frameworks, defined pore sizes, and capacity for structural design, synthetic control, and functional customization. This paper provides a comprehensive analysis of graph entropies and hybrid topological descriptors, derived from geometric, harmonic, and Zagreb indices. These descriptors are applied to study two variations of Marta covalent organic frameworks based on contorted hexabenzocoronenes.

View Article and Find Full Text PDF

Reinforcing chemically treated human hair with citric acid.

Int J Cosmet Sci

January 2025

L'Oréal Research & Innovation, Aulnay-sous-Bois, France.

Objective: The objective of this work was to conduct a systematic study to evaluate the performance of citric acid (CA), an example of a commonly used organic acid in hair cosmetics, on different types of chemically treated hair and to better understand how CA works.

Methods: Consumer-centric routines were used to prepare the chemically treated hair, namely high-lift bleached, middle-lift bleached, permanently coloured and a combination of permed and coloured hair. Hair was subsequently treated with CA and hair reinforcement was investigated by physical techniques: High Pressure Differential Scanning Calorimetry (HPDSC), Miniature Tensile Test (MTT), Cyclic Fatigue Tensile Test (CFTT) & Micro X-ray Diffraction (μXRD) as well as chemical analysis (elemental, amino acids).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!