Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Milk contains a variety of components that have been shown to affect the expression and localization of epithelial tight junction proteins and therefore the intestinal barrier. Thus, we hypothesized that milk would have an effect on intestinal barrier properties, owing to effects on the tight junction in an intraspecies porcine intestinal in vitro model. Jejunal samples of piglets derived from different age groups were analyzed. Transepithelial electrical resistance was recorded employing the Ussing chamber technique. Porcine milk or predigested milk in buffer solution was added to the apical side, and effects were compared to untreated controls. Unidirectional paracellular flux measurements were performed using sodium fluorescein. Tight junction protein expression and localization were analyzed by immunoblotting and immunofluorescence microscopy. Incubation with milk or predigested milk led to an increase in transepithelial electrical resistance, while paracellular permeability for sodium fluorescein did not result in significant changes. Densitometric analysis of immunoblot signals did not show significant alterations in claudin expression, but a reduction of claudin signals in apicolateral membrane compartments in both approaches became apparent via immunohistology. The functional effect might reflect a physiological protective mechanism, when offspring exclusively rely on their mother's milk and are exposed to a plethora of potentially barrier-perturbing factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nyas.13340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!