Simple and scalable preparation of master mold for nanoimprint lithography.

Nanotechnology

Toyota Central Research & Development Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan.

Published: May 2017

Nanoimprint lithography (NIL) is one of the most prominent bottom-up techniques for duplicating nanostructures with a high throughput. However, fabrication of starting master mold commonly requires expensive equipment of top-down techniques, or additional steps to transfer the fabricated patterns from bottom-up methods. Here we demonstrate that a SiO nanostructure manufactured from a self-assembled block copolymer, polystyrene-b-polydimethylsiloxane (PS-b-PDMS), directly serves as a master mold for NIL without further modification. A hexagonally aligned pattern over the entire substrate is established using a simple technique; solvent annealing and etching. Etching also plays an important role in endowing fluorine on the surface of SiO, thus promoting smooth demolding upon imprinting. The obtained pattern of the SiO nanostructure is transferred to a polymer surface using UV nanoimprint. Identical patterns of the SiO nanostructure are elaborately reproduced on Ni and Cu nanodot arrays via electroplating on the polymer transcript, which was verified by morphological observations. The uniformity of the replicated Ni nanodot array is evaluated using spectroscopic ellipsometry. The measured optical response of the Ni nanodot is validated by electromagnetically simulated results, indicating that the pattern transfer is not limited to a small local area. In addition, the durability of the SiO mold pattern is corroborated after the imprinting process, thus guaranteeing the reusability of the fabricated nanostructure as a master mold. The proposed approach does not require any high-end lithographic techniques; this may result in significant cost and time reductions in future nanofabrication.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa6a9fDOI Listing

Publication Analysis

Top Keywords

master mold
16
sio nanostructure
12
nanoimprint lithography
8
mold
5
sio
5
simple scalable
4
scalable preparation
4
master
4
preparation master
4
mold nanoimprint
4

Similar Publications

Purpose: Feeding plates for cleft palate patients have been used by clinicians for many years to temporarily close the oro-nasal communication until definitive treatment with surgical techniques. The current in vitro study aimed to evaluate the adaptation of the feeding plates manufactured by two different techniques for three cleft types.

Materials And Methods: Feeding plates were manufactured with conventional compression molding (CM) and 3-dimensional (3D) additive manufacturing on main models representing bilateral cleft, unilateral right, and unilateral left cleft types (n = 10).

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

: is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. : We reported the first case of endophthalmitis due to , describing microbiological diagnostic approaches.

View Article and Find Full Text PDF

Fungal keratitis is a severe ocular infection caused by pathogenic fungi, leading to potential vision loss if untreated. Current antifungal treatments face limitations such as low solubility, poor corneal penetration, and limited therapeutic options. This study aimed to develop a thermosensitive in situ gel incorporating ketoconazole nanoparticles (NPs) to enhance drug solubility, stability, and antifungal activity.

View Article and Find Full Text PDF

Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!