Metal nanoparticles (NPs), in particular gold NPs, are often used in the fabrication process of semiconductor nanowires. Besides being able to induce the 1D crystallization of new material, it is highly beneficial if the NPs can be used to dictate the position and diameter of the final nanowire structure. To achieve well-defined NP arrays of varying diameter and pitch distances for nanowire growth, it is necessary to understand and control the effect that a pre-growth annealing process may have on the pre-defined NP arrays. Recently, it has been demonstrated that silver (Ag) may be an alternative to using gold (Au) NPs as seed for particle-seeded nanowire fabrication. This work brings light onto the effect of annealing of Au, Ag and Au-Ag alloy metal NP arrays in two commonly used epitaxial systems, the molecular beam epitaxy (MBE) and the metalorganic vapor phase epitaxy (MOVPE). The metal NP arrays are fabricated with the aid of electron beam lithography on GaAs 100 and 111B wafers and the evolution of the NPs with respect to shape, size and position on the surfaces is studied after annealing using scanning electron microscopy. We find that while the Au NP arrays are found to be stable when annealed up to 600 °C in a MOVPE system, a diameter and pitch dependent splitting of the particles is seen for annealing in a MBE system. The Ag NP arrays are found to be less stable, with smaller diameters (≤50 nm) dissolving during the annealing process in both epitaxial systems. In general, the mobility of the NPs is observed to differ between the two the GaAs 100 and 111B surfaces. Finally, our observations on the effect of annealing on Au-Ag alloy NP arrays suggest that these NP can withstand necessary annealing conditions for a complete de-oxidation of GaAs surfaces in both MOVPE and MBE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aa6aef | DOI Listing |
ACS Appl Mater Interfaces
July 2024
TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Plasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures.
View Article and Find Full Text PDFFood Chem
November 2024
Department of Chemistry, Addis Ababa University, P. O. Box, 1176, Addis Ababa, Ethiopia. Electronic address:
In this study, we have developed a novel, hypersensitive, and ultraselective electrochemical sensor containing thermally annealed gold-silver alloy nanoporous matrices (TA-Au-Ag-ANpM) integrated with f-MWCNTs-CPE and poly(l-serine) nanocomposites for the simultaneous detection of sulfathiazole (SFT) and sulfamethoxazole (SFM) residues in honey, beef, and egg samples. TA-Au-Ag-ANpM/f-MWCNTs-CPE/poly(l-serine) was characterized using an extensive array of analytical (UV-Vis, FT-IR, XRD, SEM, and EDX), and electrochemical (EIS, CV and SWV) techniques. It exhibited outstanding performance over a wide linear range, from 4.
View Article and Find Full Text PDFChemosphere
July 2024
Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia. Electronic address:
The widespread use and misuse of antibiotics in pharmaceuticals and animal farming has resulted in their accumulation in food sources and the environment, posing significant threats to human health, the environment, and the global economy. In this study, we have developed a hypersensitive, and ultra-selective electrochemical sensor, the first of its kind, by integrating a thermally annealed gold-silver alloy nanoporous matrix (TA-Au-Ag-ANpM) with reduced graphene oxide (r-GO) and poly(glycine) at the surface of a glassy carbon electrode (GCE). This sensor aims to detect life-threatening metronidazole (MTZ) residues in food samples.
View Article and Find Full Text PDFNanotechnology
March 2024
Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
The ability to manipulate the dimensions, areal density, and form of substrate-supported Au and Ag nanoparticles (NPs) is highly desirable for utilizing their plasmonic properties in biosensing, photovoltaics, and nanophotonic applications. The transformation of thin films into the substrate-supported nanostructures by solid-state dewetting (SSD), provides an avenue to manipulate the dimensional aspects of nanostructures simply and cost-effectively on a large scale. However, spontaneous agglomeration of the film produces randomly distributed and non-uniform nanostructures that must be controlled.
View Article and Find Full Text PDFNanotechnology
February 2024
Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
In this work, we have studied the multi-photon excited photoluminescence from metal nanoclusters (NCs) of Au, Ag and Pt embedded in AlOmatrix by ion implantation. The thermal annealing process allows to obtain a system composed of larger plasmonic metal nanoparticles (NPs) surrounded by photoluminescent ultra-small metal NCs. By exciting at 1064 nm, visible emission, ranging from 450 to 800 nm, was detected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!