Mobile loops located at the active site entrance in enzymes often participate in conformational changes required to shield the reaction from bulk solvent, to control the access of the substrate to the active site, and to position residues for substrate binding and catalysis. In d-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH), previous crystallographic data suggested that residues 45-47 in the FAD-binding domain and residues 50-56 in the substrate-binding domain in loop L1 could adopt two distinct conformations. In this study, we have used molecular dynamics, kinetics, and fluorescence spectroscopy on the S45A and A46G enzyme variants of PaDADH to investigate the impact of mutations in loop L1 on the catalytic function of the enzyme. Molecular dynamics showed that the mutant enzymes have probabilities of being in open conformations that are higher than that of wild-type PaDADH of loop L1, yielding an increased level of solvent exposure of the active site. In agreement, the flavin fluorescence intensity was ∼2-fold higher in the S45A and A46G enzymes than in wild-type PaDADH, with a 9 nm bathochromic shift of the emission band. In the variant enzymes, the k/K values with d-arginine were ∼13-fold lower than in wild-type PaDADH. Moreover, the pH profiles for the k value with d-arginine showed a hollow, consistent with restricted proton movements in catalysis, and no saturation was achieved with the alternate substrate d-leucine in the reductive half-reaction of the variant enzymes. Taken together, the computational and experimental data are consistent with the dynamics of loop L1 being important for substrate capture and catalysis in PaDADH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.7b00098 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFLangmuir
January 2025
Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFCancer Discov
January 2025
Salk Institute for Biological Studies, La Jolla, CA, United States.
Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!