Ultra-broadband light-absorbing materials are highly desired for effective solar-energy harvesting. Herein, novel cobalt phosphide double-shelled nanocages (CoP-NCs) are synthesized. Uniquely, these CoP-NCs are able to nonselectively absorb light spanning the full solar spectrum, benefiting from its electronic properties and hollow nanostructure. They promise a wide range of applications involving solar energy utilization. As proof-of-concept demonstrations, CoP-NCs are employed here as effective photothermal agents to ablate cancer cells by utilizing their ability of near-infrared heat conversion, and as photoactive material for self-powered photoelectrochemical sensing by taking advantage of their ability of photon-to-electricity conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201700798DOI Listing

Publication Analysis

Top Keywords

cobalt phosphide
8
phosphide double-shelled
8
double-shelled nanocages
8
self-powered photoelectrochemical
8
nanocages broadband
4
broadband light-harvesting
4
light-harvesting nanostructures
4
nanostructures efficient
4
efficient photothermal
4
photothermal therapy
4

Similar Publications

The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.

View Article and Find Full Text PDF

Cobalt phosphide nanoarrays on a borate-modified nickel foam substrate as an efficient dual-electrocatalyst for overall water splitting.

J Colloid Interface Sci

December 2024

School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China. Electronic address:

Developing efficient non-noble metal dual-functional electrocatalysts for overall water splitting is essential for the production of green hydrogen. Given the significant advantages of self-supporting electrodes, regulating the growth of self-supporting nanoarrays on a conductive substrate is conducive to improving the electrocatalytic activity. In this work, aligned cobalt phosphide (CoP) nanowire arrays grown on borate-modified Ni foam substrate (CoP/R-NF) were utilized as a bifunctional electrocatalyst for both hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) in alkaline solution.

View Article and Find Full Text PDF

CoP electrocatalysts embedded in nitrogen-doped carbon as a host toward fast iodine conversions.

Chem Commun (Camb)

December 2024

Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.

Herein, well-dispersed cobalt phosphide (CoP) electrocatalysts embedded in nitrogen-doped carbon (CoP@NC) were developed as an iodine host for zinc iodine batteries. Benefiting from the high electrical conductivity of the carbon matrix and the strong interaction as well as the efficient electrocatalytic activity of CoP with iodine species, the host achieved rapid iodine conversion while effectively suppressing the formation of polyiodides and zinc dendrites.

View Article and Find Full Text PDF

High-performance and cost-efficient electrocatalysts and electrodes are needed to improve the hydrogen evolution reaction (HER) for the hydrogen (H) generation in electrolysers, including microbial electrolysis cells (MECs). In this study, free-standing carbon nanofiber (CNF) films with supported cobalt phosphide nanoparticles have been prepared by means of an up-scalable electrospinning process followed by a thermal treatment under controlled conditions. The produced cobalt phosphide-supported CNF films show to be nanoporous (pore volume up to 0.

View Article and Find Full Text PDF

Interface Engineering for Improved Large-Current Oxygen Evolution via Partial Phosphorization of Ce-MOF/NiCo-MOF Heterostructure.

Small

November 2024

State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.

Interface engineering for electrocatalysts has proven to be an effective method for modulating electrocatalytic properties, yet a more efficient and straightforward strategy to construct a valid heterointerface for further enhancing interface effects is urgently needed for boosting oxygen evolution reactions (OER) at large current. Herein, a closely compacted heterostructure combining NiCo-metal-organic framework (MOF) and Ce-MOF is in situ formed through a one-step hydrothermal treatment, and partial phosphorization is employed to further enhance the interface effect between the newly formed urchin-shaped NiCoP shells and hexagonal rod-like Ce-MOF cores on nickel foam (NiCoP/Ce-MOF@NF). Experimental and theoretical results indicate that the heterogeneous NiCoP/Ce-MOF@NF, characterized by a more intensive interface rather than a simple physical mixture, generates an OER-beneficial electronic structure, significantly facilitates charge transfer and reaction kinetics, and creates a synergistically stable structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!