Action potentials are fundamental to relaying information from region to region in the nervous system. Changes in action potential firing patterns in neural circuits influence how the brain processes information. In our previous study, we focused on interneuron/perineuronal astrocyte pairs in the hippocampal CA1 region and reported that direct depolarization of perineuronal astrocytes modulated the firing pattern of interneurons. In the current study, we investigated the morphological and electrophysiological properties of perineuronal oligodendrocytes, and examined their modulatory effects on interneuronal firing in the CA1 region. Perineuronal oligodendrocytes only had a few processes, which were crooked, intricately twisted, and twined around the soma and proximal region of the main processes of adjacent interneurons. Whole-cell current patterns of perineuronal oligodendrocytes were homogenous and the current-voltage relationship showed remarkable outward rectification. Although the K channel blockers, tetraethylammonium and 4-aminopyridine, clearly blocked outward currents, Ba did not significantly alter whole-cell currents. Unlike perineuronal astrocytes, the depolarization of perineuronal oligodendrocytes had no effect on interneuronal firing; however, when the interneurons were firing at a higher frequency, the hyperpolarization of perineuronal oligodendrocytes suppressed their action potentials. The suppressive effects of perineuronal oligodendrocytes were inhibited in the presence of a low concentration of tetraethylammonium, which selectively blocked deep and fast afterhyperpolarization. These results suggest that perineuronal oligodendrocytes suppress interneuronal firing through their influence on K channels, which are responsible for deep and fast afterhyperpolarization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-017-2278-9DOI Listing

Publication Analysis

Top Keywords

perineuronal oligodendrocytes
32
interneuronal firing
12
perineuronal
10
modulatory effects
8
effects perineuronal
8
oligodendrocytes
8
action potentials
8
ca1 region
8
depolarization perineuronal
8
perineuronal astrocytes
8

Similar Publications

Slight and hidden hearing loss in children have been linked to cognitive and social difficulties, and yet the neurobiological mechanisms behind these issues remain poorly understood. Most animal models focus on severe hearing loss, leaving the effects of hidden or slight hearing loss largely unexplored. To uncover the neural mechanisms connecting slight/hidden hearing loss to cognitive and social challenges, we induced hearing loss in young (4-week-old) Wistar rats through noise exposure.

View Article and Find Full Text PDF

Remyelination is a crucial regenerative process in demyelinating diseases, limiting persisting damage to the central nervous system (CNS). It restores saltatory nerve conduction and ensures trophic support of axons. In multiple sclerosis (MS) patients, remyelination has been observed in both white and grey matter and found to be more efficient in the cortex.

View Article and Find Full Text PDF

Background: Following peripheral nerve damage, various non-neuronal cells are activated, triggering accumulation in the peripheral and central nervous systems, and communicate with neurons. Evidence suggest that neuronal and non-neuronal cell communication is a critical mechanism of neuropathic pain; however, its detailed mechanisms in contributing to neuropathic orofacial pain development remain unclear.

Highlight: Neuronal and non-neuronal cell communication in the trigeminal ganglion (TG) is believed to cause neuronal hyperactivation following trigeminal nerve damage, resulting in neuropathic orofacial pain.

View Article and Find Full Text PDF

Zinc-a2-Glycoprotein Acts as a Component of PNN to Protect Hippocampal Neurons from Apoptosis.

Mol Neurobiol

June 2024

Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.

In the adult mouse brain, perineuronal net (PNN), a highly structured extracellular matrix, surrounds subsets of neurons. The AZGP1 gene encodes zinc-2-glycoprotein (ZAG) is a lipid-mobilizing factor. However, its expression and distribution in the adult brain have been controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!