Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil.

Environ Geochem Health

Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany.

Published: December 2017

Soil reclamation via additives can cause contradictory effects on the mobilization of toxic elements in soils under dry and wet conditions. Therefore, our aim was to investigate the impact of compost and sulfur in two rates (1.25 and 2.5%) on fractionation, mobilization, and phyto-availability of cadmium (Cd) and nickel (Ni) to sorghum (dry soil) and barnyard grass (wet soil) in a fluvial soil spiked with 25 mg Cd or 200 mg Ni/kg soil. Compost decreased the solubility and mobilization of Cd (especially in dry soil) and Ni (in both soils). Sulfur increased the solubility of Cd (31% in dry soil-49% in wet soil) and Ni (4.6% in wet soil-8.7% in dry soil). Sulfur altered the carbonate fraction of Cd to the soluble fraction and the residual fraction of Cd and Ni to the non-residual fraction. Compost decreased Cd and increased Ni in sorghum, but enhanced Cd and degraded Ni in grass. Sulfur increased Cd and Ni in both plants, and the increasing rate of Cd was higher in grass than in sorghum, while Ni was higher in sorghum than in grass. These results suggest that compost can be used as an immobilizing agent for Cd in the dry soil and Ni in the wet soil; however, it might be used as mobilizing agent for Cd in the wet soil and Ni in the dry soil. Sulfur (with rate 2.5%) can be used for enhancing the phyto-extraction of Cd and Ni (especially Cd) from contaminated alkaline soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-017-9962-1DOI Listing

Publication Analysis

Top Keywords

dry soil
20
wet soil
16
soil
13
compost sulfur
8
mobilization phyto-availability
8
barnyard grass
8
fluvial soil
8
compost decreased
8
sulfur increased
8
soil sulfur
8

Similar Publications

Sweetpotato Stem Rot Nematode () causes the most devastating disease affecting sweetpotato production in China. The objectives of this study were: i) establish a quantification method using real-time PCR for of sweetpotato; ii) analyze the effect of density at harvest on the percentage of disease incidence in sweetpotatoes; and iii) evaluate the effect of soil physical properties on disease incidence. Populations of isolated from 28 different production areas in Henan Province exhibited identical sequences, and then real-time PCR specific primers (PRNf and PRNr) were designed.

View Article and Find Full Text PDF

Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.

View Article and Find Full Text PDF

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

The Casarabe culture (500-1400 CE), spreading over roughly 4,500 km of the monumental mounds region of the Llanos de Moxos, Bolivia, is one of the clearest examples of urbanism in pre-Columbian (pre-1492 CE) Amazonia. It exhibits a four-tier hierarchical settlement pattern, with hundreds of monumental mounds interconnected by canals and causeways. Despite archaeological evidence indicating that maize was cultivated by this society, it is unknown whether it was the staple crop and which type of agricultural farming system was used to support this urban-scale society.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!