Deformation of nickel-titanium closed coil springs: an in vitro study.

Dental Press J Orthod

School of Dentistry, Department of Pediatric Dentistry, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil.

Published: February 2017

Objective: The aim of this paper was to determine the amount of deformation in four commercial brands of nickel-titanium closed springs.

Methods: A total of 130 springs were divided into 13 subgroups, according to their features and manufacturers (Morelli, Orthometric, Ormco and GAC) and activated from 100% to 1000% of the effective length of the nickel-titanium portion present at the spring, at 37 °C. Deactivation data were plotted and deformation was found graphically. The values were compared by analysis of variance and Tukey's post-hoc test.

Results: Springs manufactured by Morelli had the same amount of deformation when they were activated up to 700% of Y activation; springs by Orthometric had the same amount of deformation up to 600-700% of Y; springs by Ormco had the same amount of deformation up to 700-800% of Y; and finally, the majority of springs by GAC had similar deformation up to 800%-1000% of activation. All springs tested could be activated up to 700% without rupture.

Conclusions: Most subgroups were similarly deformed up to 700% of activation, without rupture of springs. Subgroups 4B, 4C, 4D and 4E showed the same amount of deformation up to 1000% of activation without any rupture at all.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398841PMC
http://dx.doi.org/10.1590/2177-6709.22.1.038-046.oarDOI Listing

Publication Analysis

Top Keywords

amount deformation
20
deformation
8
nickel-titanium closed
8
springs
8
activated 700%
8
700% activation
8
activation springs
8
activation rupture
8
amount
5
deformation nickel-titanium
4

Similar Publications

A crooked nose is a challenge for a surgeon performing rhinoplasty. When performed correctly, rhinoseptoplasty aligns the nasal framework, restores nasal patency, and achieves facial symmetry. The key to this procedure is to dissect all the structures of the nasal framework, mobilize, reposition, and stabilize them.

View Article and Find Full Text PDF

Interface Microstructure and Properties of 42CrMo/Cr5 Vacuum Billet Forged Composite Roll.

Materials (Basel)

December 2024

State Key Laboratory of Roll Composite Materials, Sinosteel Xing Tai Mechanical Roll Co., Ltd., No. 1 Xinxing West Street, Xingtai 054000, China.

Composite roll produced through casting methods typically remain in the as-cast state after forming. During the preparation process, extended exposure to high temperatures often results in microstructural coarsening at the interface and surface layers, restricting their mechanical performance. To overcome this limitation, we developed a novel vacuum billet forging process for the fabrication of composite rolls.

View Article and Find Full Text PDF

One of the long-standing challenges in the field of titanium matrix composites is achieving the synergistic optimization of high strength and excellent ductility. When pursuing high strength characteristics in materials, it is often difficult to consider their ductility. Therefore, this study prepared a Ti1400 alloy and in situ synthesized TiC-reinforced (TiC + Ti1400)/TC4 composites using low-energy ball milling and spark plasma sintering technology, followed by hot rolling, to obtain titanium matrix composites with excellent mechanical properties.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions.

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!