Two theoretical studies reveal how networks of neurons may behave during reward-based learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406203 | PMC |
http://dx.doi.org/10.7554/eLife.26157 | DOI Listing |
J Imaging Inform Med
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.
The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.
This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
The Sharp-van der Heijde score (SvH) is crucial for assessing joint damage in rheumatoid arthritis (RA) through radiographic images. However, manual scoring is time-consuming and subject to variability. This study proposes a multistage deep learning model to predict the Overall Sharp Score (OSS) from hand X-ray images.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!