Polarization is one of the fundamental properties of light, providing numerous applications in science and technology. While 'dynamically unpolarized' single-photon sources are demanded for various quantum applications, such sources have never been explored. Here we demonstrate dynamically unpolarized single-photon emission from a single [111]-oriented nitrogen- vacancy centre in diamond, in which the single-photon stream is unpolarized, exhibiting intrinsic randomness with vanishing polarization correlation between time adjacent photons. These properties not only allow true random number generation, but may also enable fundamental tests in quantum physics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405411PMC
http://dx.doi.org/10.1038/srep46722DOI Listing

Publication Analysis

Top Keywords

dynamically unpolarized
8
unpolarized single-photon
8
intrinsic randomness
8
single-photon
4
single-photon source
4
source diamond
4
diamond intrinsic
4
randomness polarization
4
polarization fundamental
4
fundamental properties
4

Similar Publications

Suppression of symmetry-breaking correlated insulators in a rhombohedral trilayer graphene superlattice.

Nat Commun

November 2024

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.

Counterintuitive temperature dependence of isospin flavor polarization has recently been found in twisted bilayer graphene, where unpolarized electrons in a Fermi liquid become a spin-valley polarized insulator upon heating. So far, the effect has been limited to v = +/-1 (one electron/hole per superlattice cell), leaving open questions such as whether it is a general property of symmetry-breaking electronic phases. Here, by studying a rhombohedral trilayer graphene/boron nitride moiré superlattice, we report that at v = -3 a resistive peak emerges at elevated temperatures or in parallel magnetic fields.

View Article and Find Full Text PDF

Protein dynamics play a vital role in biology. Quasi elastic neutron scattering (QENS) is an ideal method to access these dynamics. To isolate protein dynamics, it is important to separate the signal of the buffer and the protein.

View Article and Find Full Text PDF

Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development.

View Article and Find Full Text PDF

Chronic thromboembolic pulmonary hypertension (CTEPH) is a debilitating disease characterized by thrombotic occlusion of pulmonary arteries and vasculopathy, leading to increased pulmonary vascular resistance and progressive right-sided heart failure. Thrombotic lesions in CTEPH contain CD68 macrophages, and increasing evidence supports their role in disease pathogenesis. Macrophages are classically divided into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which are involved in wound healing and tissue repair.

View Article and Find Full Text PDF

Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1.

Immunohorizons

February 2024

Department of Microbiology and Immunology, University of Iowa, IA City, IA.

Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!