Loss of Vagal Sensitivity to Cholecystokinin in Rats Born with Intrauterine Growth Retardation and Consequence on Food Intake.

Front Endocrinol (Lausanne)

UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l'Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France.

Published: April 2017

Perinatal malnutrition is associated with low birth weight and an increased risk of developing metabolic syndrome in adulthood. Modification of food intake (FI) regulation was observed in adult rats born with intrauterine growth retardation induced by maternal dietary protein restriction during gestation and maintained restricted until weaning. Gastrointestinal peptides and particularly cholecystokinin (CCK) play a major role in short-term regulation of FI by relaying digestive signals to the hindbrain the vagal afferent nerve (VAN). We hypothesized that vagal sensitivity to CCK could be affected in rats suffering from undernutrition [low protein (LP)] during fetal and postnatal life, leading to an altered gut-brain communication and impacting satiation. Our aim was to study short-term FI along with signals of appetite and satiation in adult LP rats compared to control rats. The dose-response to CCK injection was investigated on FI as well as the associated signaling pathways activated in nodose ganglia. We showed that LP rats have a reduced first-meal satiety ratio after a fasting period associated to a higher postprandial plasmatic CCK release, a reduced sensitivity to CCK when injected at low concentration and a reduced presence of CCK-1 receptor in nodose ganglia. Accordingly, the lower basal and CCK-induced phosphorylation of calcium/calmodulin-dependent protein kinase in nodose ganglia of LP rats could reflect an under-expressed vanilloid family of transient receptor potential cation channels on VAN. Altogether, the present data demonstrated a reduced vagal sensitivity to CCK in LP rats at adulthood, which could contribute to deregulation of FI reported in this model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385335PMC
http://dx.doi.org/10.3389/fendo.2017.00065DOI Listing

Publication Analysis

Top Keywords

vagal sensitivity
12
sensitivity cck
12
nodose ganglia
12
rats
8
rats born
8
born intrauterine
8
intrauterine growth
8
growth retardation
8
food intake
8
adult rats
8

Similar Publications

Purpose Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.

View Article and Find Full Text PDF

Diagnostic accuracy of heart rate variability as a screening tool for mild neurocognitive disorder.

Front Aging Neurosci

December 2024

Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Background: Mild neurocognitive disorder (mNCD) is recognized as an early stage of dementia and is gaining attention as a significant healthcare problem due to current demographic changes and increasing numbers of patients. Timely detection of mNCD provides an opportunity for early interventions that can potentially slow down or prevent cognitive decline. Heart rate variability (HRV) may be a promising measure, as it has been shown to be sensitive to cognitive impairment.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

Engaging in muscle strengthening activities (e.g., resistance training) at least twice/week is promoted by (Inter)national movement guidelines.

View Article and Find Full Text PDF

Computational modelling of cardiac control following myocardial infarction using an in silico patient cohort.

J Physiol

December 2024

Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!