Morphogenesis of hair follicles during development and in hair reconstitution assays involves complex interactions between epithelial cells and dermal papilla cells (DPCs). DPCs may be a source of cells for hair regeneration in alopecia patients. Reconstitution of engineered hair follicles requires in vitro culture of trichogenic cells, a three-dimensional scaffolds, and biomolecular signals. However, DPCs tend to lose their biological activity when cultured as trichogenic cells, and scaffolds currently used for hair follicle regeneration lack biological efficiency and biocompatibility. Platelet-rich plasma (PRP) gel forms a three-dimensional scaffold that can release endogenous growth factors, is mitogenic for a variety of cell types and is used in model tissue repair and regeneration systems. We found that 5% activated PRP significantly enhanced cell proliferation and hair-inductive capability of mouse and human DPCs in vitro and promoted mouse hair follicle formation in vivo. PRP also formed a three-dimensional gel after activation. We used PRP gel as a scaffold to form many de novo hair follicles on a plane surface, showing it to be candidate bioactive scaffold capable of releasing endogenous growth factors for cell-based hair follicle regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430928PMC
http://dx.doi.org/10.1038/s41598-017-01105-8DOI Listing

Publication Analysis

Top Keywords

hair follicle
16
hair follicles
12
platelet-rich plasma
8
dermal papilla
8
papilla cells
8
hair
8
trichogenic cells
8
follicle regeneration
8
prp gel
8
endogenous growth
8

Similar Publications

Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.

Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.

View Article and Find Full Text PDF

Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.

View Article and Find Full Text PDF

Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies.

Int J Nanomedicine

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.

Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.

View Article and Find Full Text PDF

Relationship between fiber quality and follicle density in Ch'aku llamas (Lama glama).

Trop Anim Health Prod

December 2024

Faculty of Veterinary Medicine and Animal Science, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Perú.

In the high altitudes of the Andes, llama breeders shear the fiber from their animals, obtaining fleeces for many purposes. Dehairing the fleece of these animals is a viable alternative to improving the quality and value of the fleece. The study examined the attributes of fiber quality and pilose follicle of dehaired and non-dehaired fleece from Ch'aku llamas and the relationship among these characteristics.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!