Minus end-directed cargo transport along microtubules (MTs) is exclusively driven by the molecular motor dynein in a wide variety of cell types. Interestingly, during evolution, plants have lost the genes encoding dynein; the MT motors that compensate for dynein function are unknown. Here, we show that two members of the kinesin-14 family drive minus end-directed transport in plants. Gene knockout analyses of the moss revealed that the plant-specific class VI kinesin-14, KCBP, is required for minus end-directed transport of the nucleus and chloroplasts. Purified KCBP directly bound to acidic phospholipids and unidirectionally transported phospholipid liposomes along MTs in vitro. Thus, minus end-directed transport of membranous cargoes might be driven by their direct interaction with this motor protein. Newly nucleated cytoplasmic MTs represent another known cargo exhibiting minus end-directed motility, and we identified the conserved class I kinesin-14 (ATK) as the motor involved. These results suggest that kinesin-14 motors were duplicated and developed as alternative MT-based minus end-directed transporters in land plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461021PMC
http://dx.doi.org/10.1083/jcb.201610065DOI Listing

Publication Analysis

Top Keywords

minus end-directed
28
end-directed transport
16
kinesin-14 family
8
class kinesin-14
8
minus
7
end-directed
7
transport
5
multiple kinesin-14
4
family members
4
members drive
4

Similar Publications

Force balance of opposing diffusive motors generates polarity-sorted microtubule patterns.

Proc Natl Acad Sci U S A

December 2024

CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France.

The internal organization of cells is largely determined by the architecture and orientation of the microtubule network. Microtubules serve as polar tracks for the selective transport of specific molecular motors toward either their plus or minus ends. How both motors reciprocally move microtubules and organize the network's arrangement and polarity is unknown.

View Article and Find Full Text PDF

Correct mitotic spindle size is required for accurate chromosome segregation during cell division. It is controlled by mechanical forces generated by molecular motors and non-motor proteins acting on spindle microtubules. However, how forces generated by individual proteins enable bipolar spindle organization is not well understood.

View Article and Find Full Text PDF

Kinesin-5/Cut7 C-terminal tail phosphorylation is essential for microtubule sliding force and bipolar mitotic spindle assembly.

Curr Biol

October 2024

Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA. Electronic address:

Kinesin-5 motors play an essential role during mitotic spindle assembly in many organisms: they crosslink antiparallel spindle microtubules, step toward plus ends, and slide the microtubules apart. This activity separates the spindle poles and chromosomes. Kinesin-5s are not only plus-end-directed but can walk or be carried toward MT minus ends, where they show enhanced localization.

View Article and Find Full Text PDF

Despite the importance of cellular senescence in human health, how damaged cells undergo senescence remains elusive. We have previously shown that promyelocytic leukemia nuclear body (PML-NBs) translocation of the ciliary FBF1 is essential for senescence induction in stressed cells. Here we discover that an early cellular event occurring in stressed cells is the transient assembly of stress-induced nucleus-to-cilium microtubule arrays (sinc-MTs).

View Article and Find Full Text PDF

The cytoskeleton consists of actin, microtubules, septins, and intermediate filaments and, in most cells, is anchored to an extracellular matrix. Each cell has a unique arrangement of this network and readjusts it from time to time. To investigate the regulation of these reorganizations, we identified interactors from extracts of four cultured lines representing basal cells from the airway epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!