Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50mg kg to disrupt Sertoli-germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood-testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P<0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte-spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood-testis barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD15378DOI Listing

Publication Analysis

Top Keywords

blood-testis barrier
8
germ cells
8
indazole carboxylic
8
lonidamine-ethyl ester
8
lonidamine-ethyl ester-mediated
4
ester-mediated remodelling
4
remodelling sertoli
4
sertoli cell
4
cell cytoskeleton
4
cytoskeleton induces
4

Similar Publications

Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.

View Article and Find Full Text PDF

BP-3 exposure at environmentally relevant concentrations induced male developmental reproductive toxicity via ER/CCL27/ROS pathway in mice.

Ecotoxicol Environ Saf

December 2024

The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:

BP-3 is the most widely used ultraviolet absorber, but its toxic effects and mechanisms far from being elucidated. This study evaluated the male developmental reproductive toxicities and mechanism of low-doses of BP-3. The results indicated that BP-3 (2.

View Article and Find Full Text PDF

Cancer treatments, including cytotoxic therapy, often result in male infertility, necessitating the development of safe and effective strategies to preserve male reproductive potential during chemotherapy. Notably, our study uncovers the potential of repurposing riluzole, an FDA-approved drug for amyotrophic lateral sclerosis (ALS), in enhancing spermatogenesis. Hence, this research aims to explore the feasibility of utilizing riluzole to alleviate male infertility induced by busulfan (BSF), a commonly used chemotherapy drug.

View Article and Find Full Text PDF

Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1-100 nm), provide themselves the opportunity to be internalized by the body and pass the blood-testis barrier (BTB). Therefore, TiO-NPs can act on spermatogenesis and spermatozoa.

View Article and Find Full Text PDF

Testicular immunity.

Mol Aspects Med

December 2024

Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA. Electronic address:

Article Synopsis
  • * Key factors supporting testicular immune privilege include the blood-testis barrier, specialized immune cells, Sertoli cells' immunomodulation, and high steroid hormone levels.
  • * Disruption of testicular immunity by infections or autoimmune reactions can lead to infertility and damage to germ cells, highlighting the need for further research to understand and improve treatments related to male fertility.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!