Particles of sub-micron size possess significant capacity to adsorb organic molecules from aqueous media. Semiconductor photocatalysts in particle form could potentially be utilized for dye removal through either physical adsorption or photo-induced chemical process. The photocatalytic and adsorption capabilities of Cu₂O particles with various exposed crystal facets have been studied through separate adsorption capacity test and photocatalytic degradation test. These crystals display unique cubic, octahedral, rhombic dodecahedral, and truncated polyhedral shapes due to specifically exposed crystal facet(s). For comparison, Cu₂O particles with no clear exposed facets were also prepared. The current work confirms that the surface charge critically affects the adsorption performance of the synthesized Cu₂O particles. The octahedral shaped Cu₂O particles, with exposed {111} facets, possess the best adsorption capability of methyl orange (MO) dye due to the strongest positive surface charge among the different types of particles. In addition, we also found that the adsorption of MO follows the Langmuir monolayer mechanism. The octahedral particles also performed the best in photocatalytic dye degradation of MO under visible light irradiation because of the assistance from dye absorption. On top of the photocatalytic study, the stability of these Cu₂O particles during the photocatalytic processes was also investigated. Cu(OH)₂ and CuO are the likely corrosion products found on the particle surface after the photocorrosion in MO solution. By adding hole scavengers in the solution, the photocorrosion of Cu₂O was greatly reduced. This observation confirms that the photocatalytically generated holes were responsible for the photocorrosion of Cu₂O.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154712 | PMC |
http://dx.doi.org/10.3390/molecules22040677 | DOI Listing |
Int J Part Ther
March 2025
Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan.
Purpose: This study aims to determine dosimetric influence of rectal gas in carbon ion radiation therapy (CIRT) for prostate cancer and to establish a procedure for removal rectal gas in clinical scenarios.
Materials And Methods: We analyzed 18 prostate cancer cases with bulky rectal gas. The dose distribution was recalculated on computed tomography (CT) with bulky rectal gas (gasCT) after creating the initial plan on a CT without bulky rectal gas, and the doses were transformed using a displacement vector field.
Int J Health Sci (Qassim)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.
Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.
View Article and Find Full Text PDFFront Robot AI
December 2024
Intelligent Robotics Group, Electrical Engineering and Automation Department, Aalto University, Helsinki, Finland.
This work considers the problem of learning cooperative policies in multi-agent settings with partially observable and non-stationary environments without a communication channel. We focus on improving information sharing between agents and propose a new multi-agent actor-critic method called (MACRPO). We propose two novel ways of integrating information across agents and time in MACRPO: First, we use a recurrent layer in the critic's network architecture and propose a new framework to use the proposed meta-trajectory to train the recurrent layer.
View Article and Find Full Text PDFNanoscale Adv
December 2024
School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
The large amounts of attention directed towards the commercialization of renewable energy systems have motivated extensive research to develop non-precious-metal-based catalysts for promoting the electrochemical production of H and O from water. Here, we report promising technology, , electrochemical water splitting for OER and HER. This work used a simple hydrothermal method to synthesize a novel CoTe-FeC nanocomposite directly on a stainless-steel substrate.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.
To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!