Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:

Published: August 2017

Ultrafast electronic relaxation processes following two photoexcitation of 400nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S state are directly imaged in real time and well characterized by two distinct time constants of ~85±10fs and 2.4±0.3ps. The rapid component corresponds to the lifetime of the initially excited S state, including the structure relaxation from the Franck-Condon region to the conical intersection of S/S and the subsequent internal conversion to the highly excited S state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S from the secondarily populated S locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S and the evidently faster decay of S, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.04.028DOI Listing

Publication Analysis

Top Keywords

electronic relaxation
12
relaxation processes
12
excited state
12
cascaded electronic
8
internal conversion
8
slower relaxation
8
relaxation
6
real-time observation
4
observation cascaded
4
processes p-fluorotoluene
4

Similar Publications

A systematic review of the comparative effects of sound and music interventions for intensive care unit patients' outcomes.

Aust Crit Care

December 2024

Department of Music, Canadian Centre for Ethnomusicology (CCE), Department of Performing Arts, Faculty of Communication and Media Studies, University for Development Studies, Ghana; Department of Music, Faculty of Arts, University of Alberta, 3-98 Fine Arts Building, Edmonton, AB, T6G 2C9, Canada. Electronic address:

Background: Despite syntheses of evidence showing efficacy of music intervention for improving psychological and physiological outcomes in critically ill patients, interventions that include nonmusic sounds have not been addressed in reviews of evidence. It is unclear if nonmusic sounds in the intensive care unit (ICU) can confer benefits similar to those of music.

Objective: The aim of this study was to summarise and contrast available evidence on the effect of music and nonmusic sound interventions for the physiological and psychological outcomes of ICU patients based on the results of randomised controlled trials.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

Mechanical characteristics of spinal cord tissue by indentation.

J Mech Behav Biomed Mater

December 2024

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:

The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.

View Article and Find Full Text PDF

Introduction: Achalasia, a rare esophageal disorder with an annual incidence of 0.11 per 100,000 in children, is characterized by impaired lower esophageal sphincter (LES) relaxation and peristalsis. Infantile cases are extremely uncommon and often linked to genetic conditions like Allgrove and Down syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!