The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W at a luminance of 1000 cd m has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A with rise in luminance (L) from 1000 to above 10 000 cd m levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa6f55DOI Listing

Publication Analysis

Top Keywords

organic light
8
light emitting
8
emitting diodes
8
zinc oxide/polyethyleneimine
8
oxide/polyethyleneimine znopei
8
interfacial layer
8
device performance
8
luminance 1000
8
highly efficient
4
efficient inverted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!