A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes. | LitMetric

Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes.

J Phys Chem B

Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States.

Published: May 2017

Understanding the effect of embedded nanoparticles on the characteristics and behavior of lipid bilayers is critical to the development of lipid-nanoparticle assemblies (LNAs) for biomedical applications. In this work we investigate the effect of hydrophobic nanoparticle size and concentration on liposomal thermal release behavior. Decorated LNAs (D-LNAs) were formed by embedding 2 nm (GNP2) and 4 nm (GNP4) dodecanethiol-capped gold nanoparticles into DPPC liposomes at lipid to nanoparticle ratios (L:N) of 25,000:1, 10,000:1, and 5,000:1. D-LNA structure was investigated by cryogenic transmission electron microscopy, and lipid bilayer permeability and phase behavior were investigated based on the leakage of a model drug, carboxyfluorescein, and by differential scanning calorimetry, respectively. The presence of bilayer nanoparticles caused changes in the lipid bilayer release and phase behavior compared to pure lipid controls at very low nanoparticle to bilayer volume fractions (0.3%-4.6%). Arrhenius plots of the thermal leakage show that GNP2 led to greater increases in the leakage energy barrier compared to GNP4, consistent with GNP4 causing greater bilayer disruption due to their size relative to the bilayer thickness. Embedding hydrophobic nanoparticles as permeability modifiers is a unique approach to controlling liposomal leakage based on nanoparticle size and concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b01702DOI Listing

Publication Analysis

Top Keywords

hydrophobic nanoparticles
8
thermal release
8
release behavior
8
nanoparticle size
8
size concentration
8
lipid bilayer
8
phase behavior
8
bilayer
6
behavior
5
lipid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!