A series of 2,2'-dihydroxybenzophenones and their carbonyl N-analogues were studied as potential inhibitors against human glutathione transferase M1-1 (hGSTM1-1) purified from recombinant E. coli. Their screening revealed an inhibition against hGSTM1-1 within a range of 0-42% (25 μM). The IC values for the two stronger ones, 16 and 13, were 53.5 ± 5.6 μΜ and 28.5 ± 2.5 μΜ, respectively. The results were compared with earlier ones for isoenzymes hGSTP1-1 and hGSTA1-1 involved in MDR. All but one bind more strongly to A1-1, than M1-1 and P1-1, the latter being a poor binder. An order of potency A1-1 > > M1-1 >  P1-1 meritted 13, 14 and 16 as the most potent inhibitors with hGSTM1-1. Enzyme kinetics with hGSTM1-1 (K 213 ± 10 μΜ and K 303 ± 11 μΜ) revealed a competitive modality for 16 (K  = 22.3 ± 1.1 μΜ) and a mixed one for 13 versus CDNB (K  = 33.3 ± 1.6 μM for the free enzyme and K ' = 17.7 ± 1.7 μM for the enzyme-CDNB complex). 5- or 5'-Bromo- or phenyl-substituted (but not in combination) inhibitors, having a H-bonded oxime weakly acidic group of a small volume, are optimal candidates for binding hGSTM1-1. The outcome of the isoenzyme trilogy identified good binder leads for the investigated GSTs involved in MDR.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13011DOI Listing

Publication Analysis

Top Keywords

involved mdr
12
carbonyl n-analogues
8
human glutathione
8
glutathione transferase
8
transferase m1-1
8
hgstm1-1
5
concluding trilogy
4
trilogy interaction
4
interaction 22'-dihydroxy-benzophenones
4
22'-dihydroxy-benzophenones carbonyl
4

Similar Publications

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Objectives: To evaluate the antimicrobial susceptibilities of Gram-positive and Gram-negative isolates from patients in Jordan between 2010 and 2021, through the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme.

Methods: Medical centres in Jordan collected bacterial isolates from hospitalised patients with defined infection sources between 2010 and 2021 (no isolates collected in 2014). Antimicrobial susceptibility was interpreted using CLSI standards.

View Article and Find Full Text PDF

Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Background: Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the gene. The 1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of 1mediated resistance poses significant challenges for infection control and treatment efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!