Background And Purpose: Exhaled breath carbon monoxide (eBCO) reading is a useful tool for nurse practitioners to evaluate smoking status and other exposures to carbon monoxide (CO) to identify risk for cancer and chronic disease. This study aimed to measure one community's eBCO and identify potential environmental factors that may affect eBCO among nonsmokers.

Methods: Data collected by convenience sampling at community health events included self-reported tobacco use and potential CO exposure. Means and frequency calculations describe the sample, two-sided t-tests determine differences in continuous variables, and chi-square tests determine differences in frequencies of CO levels between nontobacco users exposed to additional CO from their environment and nontobacco users who were not.

Conclusion: As expected, smokers have significantly higher mean eBCO than nonsmokers (20.1 ppm vs. 4.4 ppm, p < .001). The self-reported nonsmokers (16.2%) had an elevated eBCO (>6 ppm), although there were no environmental factors that explained a higher eBCO.

Implications For Practice: Measuring eBCO provides an opportunity for the nurse practitioner to engage in a conversation about the impact of smoking and other environmental factors that contribute to eBCO and health. Keeping record of patients' smoking status and eBCO in their medical record is a valuable measure of the nurse practitioner's delivery of this care.

Download full-text PDF

Source
http://dx.doi.org/10.1002/2327-6924.12460DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
12
environmental factors
12
exhaled breath
8
breath carbon
8
ebco
8
smoking status
8
determine differences
8
nontobacco users
8
measurement exhaled
4
monoxide clinical
4

Similar Publications

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown.

View Article and Find Full Text PDF

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Standardised lung function metrics in healthy athletes.

Scand J Clin Lab Invest

January 2025

Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

The objective of the current review was to identify whether clinically established lung function metrics of ventilatory and diffusion capacity obtained by standardised methodology are consistent with superior lung function in athletes, and whether this is related to maximal oxygen uptake (V̇O). Three independent reviewers performed a literature search in PubMed, Scopus, and reference screening. Data was extracted and analysed according to a predefined strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!