Acute myocarditis is a non-ischemic inflammatory disease of the myocardium, and there is currently no standard treatment. Mesenchymal stem cells (MSCs) can alleviate myosin‑induced myocarditis; however, the mechanism has not been clearly elucidated. In the present study, the authors investigated the ability of human umbilical cordMSCs (HuMSCs) to attenuate myocardial injury and dysfunction during the acute phase of experimental myocarditis. Male Lewis rats (aged 8 weeks) were injected with porcine myosin to induce myocarditis. Cultured HuMSCs (1x106 cells/rat) were intravenously injected 10 days following myosin injection. A total of 3 weeks following injection, this resulted in severe inflammation and significant deterioration of cardiac function. HuMSC transplantation attenuated infiltration of inflammatory cells and adverse cardiac remodeling, as well as reduced cardiomyocyte apoptosis. Furthermore, it was identified that HuMSC transplantation suppressed endoplasmic reticulum stress and extracellular signal‑regulated kinase (ERK)1/2 signaling in experimental autoimmune myocarditis (EAM). The reduced number of TUNEL‑positive apoptotic cells in myocardial sections from HuMSC‑treated EAM rats compared with control demonstrates HuMSCs' anti‑apoptotic function. Based on these data, the author suggested that treatment with HuMSCs inhibits myocardial apoptosis in EAM rats, ultimately protecting them from myocardial damage. The conclusion demonstrated that HuMSC transplantation attenuates myocardial injury and dysfunction in a rat model of acute myocarditis, potentially via regulation of ER stress, ERK1/2 signaling and induction of cardiomyocyte apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436290PMC
http://dx.doi.org/10.3892/mmr.2017.6454DOI Listing

Publication Analysis

Top Keywords

acute myocarditis
12
humsc transplantation
12
human umbilical
8
mesenchymal stem
8
stem cells
8
endoplasmic reticulum
8
reticulum stress
8
stress extracellular
8
myocardial injury
8
injury dysfunction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!