Thymosin β4 promotes the survival and angiogenesis of transplanted endothelial progenitor cells in the infarcted myocardium.

Int J Mol Med

Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, Shanghai 200032, P.R. China.

Published: June 2017

The survival of transplanted stem cells in ischemic tissue is poor. In the present study, the effects of thymosin β4 (Tβ4) on the survival and angiogenesis of endothelial progenitor cells (EPCs) and improvement in cardiac functions after transplantation of Tβ4-treated EPCs in the infarcted myocardium were investigated. EPCs were isolated from bone marrow of adult male rats and incubated in Endothelial Basal Medium-2. Then the cells were treated with Tβ4 at different concentrations (0.05, 0.1 and 0.2 µM), and cells incubated with DMEM were set as controls. MTT assay, Transwell assay and tube formation in Matrigel were used to detect cell viability, migration and angiogenesis, respectively. For examining the protective effect of Tβ4 on EPCs, the cells were also incubated in the condition of hypoxia and serum deprivation. p-Akt expression was also examined using western blot analysis. Rat models of myocardial infarction (MI) were established by ligation of the anterior descending branch of the left coronary artery. At four weeks after intramyocardial injection of Tβ4-treated EPCs, the changes in cardiac functions, size of the scar tissue and density of microvessels were examined by echocardiography, Masson's trichrome staining, immunohistochemistry and fluorescence in situ hybridization (FISH) for the Y-chromosome. Tβ4 enhanced EPC viability, protected the cells from apoptosis in hypoxia and serum deprivation, and promoted the proliferation and migration of the cells and formation of capillary-like structures in the cells. Moreover, Tβ4 increased p-Akt expression in the cells. The cytoprotective and proangiogenic effects of Tβ4 were in a dose-dependent manner. Tβ4-treated EPCs improved cardiac function, enhanced the repair of the infarcted myocardium, and promoted angiogenesis after transplantation in the infarcted myocardium. In conclusion, pretreatment of EPCs with Tβ4 is a novel strategy for the repair of ischemic tissue after transplantation in MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428935PMC
http://dx.doi.org/10.3892/ijmm.2017.2950DOI Listing

Publication Analysis

Top Keywords

infarcted myocardium
16
tβ4-treated epcs
12
cells
10
survival angiogenesis
8
endothelial progenitor
8
progenitor cells
8
ischemic tissue
8
cardiac functions
8
cells incubated
8
hypoxia serum
8

Similar Publications

Characteristics of In Vivo Lesion Formation With a Temperature-Controlled Diamond-Tip Radiofrequency Ablation Catheter in the Ventricle: A Preclinical Model.

Circ Arrhythm Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).

Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.

View Article and Find Full Text PDF

Whole-Heart Histological and CMR Validation of Electroanatomic Mapping by Multielectrode Catheters in an Ovine Model.

JACC Clin Electrophysiol

January 2025

Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia. Electronic address:

Background: Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.

Objectives: This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.

Methods: In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.

Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!