Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm00546f | DOI Listing |
Nano Lett
December 2024
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.
View Article and Find Full Text PDFPhys Rev E
November 2024
Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
Dielectric elastomer actuators (DEAs) are an emerging type of soft actuators based on intelligent electroactive polymers. Compared with conventional rigid actuators, DEAs can adapt to extreme hydrostatic pressures without any bulky protective vessels and, therefore, have demonstrated great promises in high-hydrostatic pressure applications such as deep-sea explorations. However, the effects of the enormous hydrostatic compressions on the mechanical and electromechanical coupling properties and electrical breakdown strengths of DEAs remain unclear due to the restrictions in the existing theoretical models and limitations in the experimental techniques developed for DEAs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Physics Faculty, West University of Timisoara, Bd. V. Parvan, No. 4, 300223 Timisoara, Romania.
Three elastomer samples were prepared using GS530SP01K1 silicone rubber (ProChima). The samples included pure silicone rubber (SR), a silicone rubber-graphene composite (SR-GR), and a silicone rubber-magnetite composite (SR-FeO). The magnetite was synthesized via chemical precipitation but was not washed to remove residual ions.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Smart Material Systems, ZeMA-Center for Mechatronics and Automation Technology, 66121 Saarbruecken, Germany.
The integration of textile-based sensing and actuation elements has become increasingly important across various fields, driven by the growing demand for smart textiles in healthcare, sports, and wearable electronics. This paper presents the development of a small, smart dielectric elastomer (DE)-based sensing array designed for user control input in applications such as human-machine interaction, virtual object manipulation, and robotics. DE-based sensors are ideal for textile integration due to their flexibility, lightweight nature, and ability to seamlessly conform to surfaces without compromising comfort.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric-semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain length of donor-acceptor (D-A) copolymers impacts the electrical performance of ion-gel-gated OFETs. Two difluorobenzothiadiazole-based D-A copolymers, PffBT4T-2OD and PffBT4T-2DT, are compared, where the latter features longer alkyl side chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!