The Generation of Doubled Haploid Lines for QTL Mapping.

Methods Mol Biol

Department of Plant Biology, University of California, Davis, 1 Shields Ave., Davis, CA, USA.

Published: February 2018

Recombinant inbred lines (RILs) are an essential tool for quantitative trait locus (QTL) mapping in Arabidopsis thaliana. Conventionally, the development of these lines is a time-consuming and tedious process requiring six to eight generations of selfing. Here, we describe an alternative approach: the rapid generation of RILs in A. thaliana via the creation of doubled haploids. In this method, F plants are crossed to an engineered haploid inducer to produce haploid plants. The chromosomes of these haploids then spontaneously double, generating immortalized homozygous F lines called doubled haploid RILs (DH RILs). Finally, DH RILs are genotyped using low-coverage whole-genome sequencing and are ready to be used for QTL mapping.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7003-2_4DOI Listing

Publication Analysis

Top Keywords

qtl mapping
12
doubled haploid
8
rils
5
generation doubled
4
haploid
4
lines
4
haploid lines
4
lines qtl
4
mapping recombinant
4
recombinant inbred
4

Similar Publications

Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).

View Article and Find Full Text PDF

Identification of QTL-by-environment interaction by controlling polygenic background effect.

J Genet Genomics

January 2025

Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA. Electronic address:

The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Territorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components.

View Article and Find Full Text PDF

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!