Motor control theories propose that the central nervous system builds internal representations of the motion of both our body and external objects. These representations, called forward models, are essential for accurate motor control. For instance, to produce a precise reaching movement to catch a flying ball, the central nervous system must build predictions of the current and future states of both the arm and the ball. Accumulating evidence suggests that the cerebellar cortex contains a forward model of an individual's body movement. However, little evidence is yet available to suggest that it also contains a forward model of the movement of external objects. We investigated whether Purkinje cell simple spike responses in an oculomotor region of the cerebellar cortex called the ventral paraflocculus contained information related to the kinematics of behaviorally relevant visual stimuli. We used a visuomotor task that obliges animals to track moving targets while keeping their eyes fixated on a stationary target to separate signals related to visual tracking from signals related to eye movement. We found that ventral paraflocculus Purkinje cells do not contain information related to the kinematics of behaviorally relevant visual stimuli; they only contain information related to eye movements. Our data stand in contrast with data obtained from cerebellar Crus I, wherein Purkinje cell discharge contains information related to moving visual stimuli. Together, these findings suggest specialization in the cerebellar cortex, with some areas participating in the computation of our movement kinematics and others computing the kinematics of behaviorally relevant stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534213 | PMC |
http://dx.doi.org/10.1007/s12311-017-0861-x | DOI Listing |
Neuron
August 2023
Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
J Clin Neurophysiol
November 2019
Departments of Neurology and.
The cerebellum works as a network hub for optimizing eye movements through its mutual connections with the brainstem and beyond. Here, we review three key areas in the cerebellum that are related to the control of eye movements: (1) the flocculus/paraflocculus (tonsil) complex, primarily for high-frequency, transient vestibular responses, and also for smooth pursuit maintenance and steady gaze holding; (2) the nodulus/ventral uvula, primarily for low-frequency, sustained vestibular responses; and (3) the dorsal vermis/posterior fastigial nucleus, primarily for the accuracy of saccades. Although there is no absolute compartmentalization of function within the three major ocular motor areas in the cerebellum, the structural-functional approach provides a framework for assessing ocular motor performance in patients with disease that involves the cerebellum or the brainstem.
View Article and Find Full Text PDFPsychiatr Pol
June 2019
Uniwersytet Jagielloński Collegium Medicum, Klinika Psychiatrii Dorosłych.
Objectives: The aim of our study is to evaluate functional connectivity of cerebellothalamo-cortical networks linking frontal eye fields (FEF) and cerebellar regions associated with oculomotor control: nodulus (X), uvula (IX), flocculus (H X) and ventral paraflocculus (H IX) in bipolar disorder (BD) with the use of resting state functional magnetic resonance imaging (rsfMRI).
Methods: 19 euthymic BD patients and 14 healthy controls underwent rsfMRI examination. Functional connectivity between bilateral FEF, thalamus and cerebellar regions associated with oculomotor control was evaluated.
Front Integr Neurosci
April 2019
Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.
The central nervous system (CNS) achieves fine motor control by generating predictions of the consequences of the motor command, often called forward models of the movement. These predictions are used centrally to detect not-self generated sensations, to modify ongoing movements, and to induce motor learning. However, finding a neuronal correlate of forward models has proven difficult.
View Article and Find Full Text PDFJ Comp Neurol
October 2019
Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan.
The mammalian cerebellar cortex is compartmentalized, both anatomically and histochemically, into multiple parasagittal bands. To characterize the multiple zonal patterns of pontocerebellar mossy fiber projection, single neurons in the basilar pontine nucleus (BPN) were labeled by injecting biotinylated dextran amine into the BPN, and the entire axonal trajectory of single labeled neurons (n = 25) was reconstructed in relation to aldolase C compartments of Purkinje cells in rats. Single pontocerebellar axons, after passing through the contralateral middle cerebellar peduncle, ran transversely in the deep cerebellar white matter toward and often across the midline, and on their ways, gave rise to 2-10 primary collaterals at almost right angles in specific lobules only contralaterally or bilaterally with contralateral predominance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!