We have proposed and validate an in vitro probiotic selection, based on enzymatic potentialities associated to well-established probiotic functional properties. A new Bacillus subtilis HB2 isolate, selected based on its high extracellular enzyme production, was chosen as a probiotic candidate for application as animal feed supplement. The HB2 strain showed an excellent acid and bile salts tolerance, a strong adhesion to chick enterocytes and produced antimicrobials against pathogens. An in vivo trial in poultry farming was conducted to evaluate the HB2 probiotic performance. After 35 days, HB2 achieved the higher growth performance than the control groups. The mortality and the feed conversion ratio were significantly decreased. Finally, the HB2 treated group showed wet litter and less severe ammonia odor in the atmosphere. Our study provides new insights into the importance of enzymatic potentialities, associated with the common functional properties, as a novel approach for probiotic selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-017-1944-x | DOI Listing |
<b>Background and Objective:</b> Turmeric, strawberries and broccoli are popular in the community for their beneficial effects in improving lipid profile, but poor bioavailability and absorption of their phytochemical compounds might reduce their effects while given separately. Therefore, their combination might provide a synergistic enhancement of their property as hypolipidemic agents. This study aims to examine the effects of turmeric, strawberry and broccoli in improving lipid profile in adult patients with hypercholesterolemia.
View Article and Find Full Text PDFNat Prod Res
December 2024
School of Food Sciences and Engineering, Changchun University, Changchun, China.
(), a perennial woody plant of the Araliaceae family, is extensive in Northeast China. Esteemed for both its medicinal and edible qualities in the Changbai Mountain region, its primary components include polysaccharides, saponins, and flavonoids. displays numerous pharmacological effects, such as cardiovascular protection, anti-tumour, anti-fatigue, and hypoglycaemic properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.
View Article and Find Full Text PDFJ Orthop Res
December 2024
McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!