Recombinant plasmids carrying segments of the Agrobacterium rhizogenes T-DNA regions of the three Ri plasmids 1855 (TL-DNA only), 8196, and 2659 were used for establishing homology maps by electron microscope examination of heteroduplexes. Plasmid DNA was linearized by digestion with suitable restriction endonucleases in order to generate large T-DNA segments. Heteroduplexes were prepared in 50% formamide and spread under standard conditions. Measurements of double and single strands allowed the drawing of homology maps. The three T-DNAs share mainly two homologous sequences of respectively about 2.5 and 1.5 kb, bracketing a largely nonhomologous central part which is about 5.5 kb long. The T-DNAs from pRi1855 and pRi2659 appear to be more related to each other than to that of pRi8196. With reference to the published nucleotide sequence of the TL-DNA of pRiA4 (probably identical to that of pRi1855), ORFs 8 and 14 seem to be the most conserved sequences of the three T-DNAs. The significance of these conserved sequences is unclear since the genetic loci involved in rhizogenicity of agropine strains identified previously are located in nonhomologous regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0147-619x(88)90046-7 | DOI Listing |
Sci Rep
December 2024
Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress.
View Article and Find Full Text PDFPlanta
December 2024
Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development.
View Article and Find Full Text PDFPlant Cell Rep
November 2024
Key Laboratory of Developmental Biology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Astragalus membranaceus hairy roots induced by direct injection of Rhizobium rhizogenes with AmUGT15 overexpressing genes into the stem explants demonstrate enhanced astragaloside biosynthesis Astragalus membranaceus is a widely used medicinal plant, which has important economic, ecological, medicinal, and ornamental values for accumulating various triterpene saponins named astragalosides in roots. Although the hairy root culture technique has been established in A. membranaceus, the molecular regulation of metabolic pathways for improving astragaloside contents was not reported.
View Article and Find Full Text PDFMicroorganisms
September 2024
USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA.
Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested.
View Article and Find Full Text PDFGenomics Inform
October 2024
Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!