Upon oxygen limitation, the ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind. Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472814PMC
http://dx.doi.org/10.1128/JB.00086-17DOI Listing

Publication Analysis

Top Keywords

resd nsrr
24
nsrr fur
16
resd
11
fur binding
8
oxygen limitation
8
transcription anaerobic
8
anaerobic conditions
8
anaerobic gene
8
gene regulation
8
transcription factors
8

Similar Publications

Upon oxygen limitation, the ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions.

View Article and Find Full Text PDF

The ResD response regulator activates transcription of diverse genes in Bacillus subtilis in response to oxygen limitation. ResD regulon genes that are the most highly induced during nitrate respiration include the nitrite reductase operon (nasDEF) and the flavohemoglobin gene (hmp), whose products function in nitric oxide (NO) metabolism. Transcription of these genes is also under the negative control of the NO-sensitive NsrR repressor.

View Article and Find Full Text PDF

Regulation of the anaerobic metabolism in Bacillus subtilis.

Adv Microb Physiol

March 2013

Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.

The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes.

View Article and Find Full Text PDF

Global transcriptional control by NsrR in Bacillus subtilis.

J Bacteriol

April 2012

Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, OR, USA.

The NO-sensitive NsrR repressor of Bacillus subtilis, which carries a [4Fe-4S] cluster, controls transcription of nasD and hmp (class I regulation) under anaerobic conditions. Here, we describe another class of NsrR regulation (class II regulation) that controls a more diverse collection of genes. Base substitution analysis showed that [4Fe-4S]-NsrR recognizes a partial dyad symmetry within the class I cis-acting sites, whereas NO-insensitive interaction of NsrR with an A+T-rich class II regulatory site showed relaxed sequence specificity.

View Article and Find Full Text PDF

Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter.

Mol Microbiol

December 2010

Department of Science & Engineering, School of Medicine, Oregon Health & Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA.

NsrR is a nitric oxide (NO)-sensitive transcription repressor that controls NO metabolism in a wide range of bacteria. In Bacillus subtilis, NsrR represses transcription of the nitrite reductase (nasDEF) genes that are under positive control of the ResD-ResE two-component signal transduction system. Derepression is achieved by reaction of NO with NsrR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!