Altered temporal lobe white matter lipid ion profiles in an experimental model of sporadic Alzheimer's disease.

Mol Cell Neurosci

Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Division of Neuropathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States. Electronic address:

Published: July 2017

Background: White matter is an early and important yet under-evaluated target of Alzheimer's disease (AD). Metabolic impairments due to insulin and insulin-like growth factor resistance contribute to white matter degeneration because corresponding signal transduction pathways maintain oligodendrocyte function and survival.

Methods: This study utilized a model of sporadic AD in which adult Long Evans rats administered intracerebral streptozotocin (i.c. STZ) developed AD-type neurodegeneration. Temporal lobe white matter lipid ion profiles were characterized by matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS).

Results: Although the lipid ion species expressed in the i.c. STZ and control groups were virtually identical, i.c. STZ mainly altered the abundances of various lipid ions. Correspondingly, the i.c. STZ group was distinguished from control by principal component analysis and data bar plots. i.c. STZ mainly reduced expression of lipid ions with low m/z's (less than 810) as well as the upper range m/z lipids (m/z 964-986), and increased expression of lipid ions with m/z's between 888 and 937. Phospholipids were mainly included among the clusters inhibited by i.c. STZ, while both sulfatides and phospholipids were increased by i.c. STZ. However, Chi-Square analysis demonstrated significant i.c. STZ-induced trend reductions in phospholipids and increases in sulfatides (P<0.00001).

Conclusions: The i.c. STZ model of sporadic AD is associated with broad and sustained abnormalities in temporal lobe white matter lipids. The findings suggest that the i.c. STZ model could be used for pre-clinical studies to assess therapeutic measures for their ability to restore white matter integrity in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507369PMC
http://dx.doi.org/10.1016/j.mcn.2017.04.010DOI Listing

Publication Analysis

Top Keywords

white matter
16
lipid ion
12
lipid ions
12
temporal lobe
8
lobe white
8
matter lipid
8
ion profiles
8
model sporadic
8
alzheimer's disease
8
expression lipid
8

Similar Publications

Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study.

AJNR Am J Neuroradiol

December 2024

From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California

Background And Purpose: Precise and individualized targeting of the ventral intermediate thalamic nucleus for the MR-guided focused ultrasound is crucial for enhancing treatment efficacy and avoiding undesirable side effects. In this study, we tested the hypothesis that the spatial relationships between Thalamus Optimized Multi Atlas Segmentation derived segmentations and the post-focused ultrasound lesion can predict post-operative side effects in patients treated with MR-guided focused ultrasound.

Materials And Methods: We retrospectively analyzed 30 patients (essential tremor, n = 26; tremor-dominant Parkinson's disease, n = 4) who underwent unilateral ventral intermediate thalamic nucleus focused ultrasound treatment.

View Article and Find Full Text PDF

Background And Objectives: Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters.

Methods: N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized.

View Article and Find Full Text PDF

Purpose: To complement the current research on altered white matter integrity in children with non-lesional temporal lobe epilepsy (NL-TLE), especially the correlation between diffusion metrics and clinical characteristics, so as to provide imaging evidence for clinical practice.

Methods: Children with temporal lobe epilepsy and no lesions on magnetic resonance imaging (MRI) were retrospectively collected from 2016.01.

View Article and Find Full Text PDF

Early detection of focal cortical dysplasia (FCD) using brain MRI in young children presenting with drug-resistant epilepsy may facilitate prompt surgical treatment, resulting in better control of seizures and decreased associated cognitive difficulties. Characteristics of FCD described in the literature are predominantly based on MRI findings in a fully myelinated brain; therefore, changes occurring during early brain maturation are not well known. In this case report, we describe distinct MRI features of a FCD visualized best before completion of myelination of the cortex and subcortical white matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!