Structural Insights into BAF47 and BAF155 Complex Formation.

J Mol Biol

School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China. Electronic address:

Published: June 2017

Mammalian BAF complexes are a subfamily of SWI/SNF ATP-dependent chromatin remodelers that dynamically modulate chromatin structure to regulate fundamental cellular processes including gene transcription, cell cycle control, and DNA damage response. So far, many distinct BAF complexes have been identified with polymorphic assemblies of up to 15 subunits from 29 genes. The evolutionarily conserved BRG1/BRM, BAF47, and BAF155/BAF170 form a stable complex that carries out essential chromatin remodeling activity and therefore have been regarded as the core components of BAF complex. Here, we first confirmed that SWIRM domain of BAF155 is responsible for its interaction with BAF47 and then narrowed down the SWIRM-binding region in BAF47 to the Repeat 1 (RPT1) domain. We further presented the high-resolution crystal structure of SWIRM/RPT1 complex. Extensive mutagenesis experiments together with isothermal titration calorimetry and NMR titrations were performed to corroborate the interactions observed in crystal structure. Overall, we demonstrated that BAF155 SWIRM is a modular domain involved in BAF47 interaction, which is functionally distinct from other characterized SWIRM domains that possess DNA binding activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2017.04.008DOI Listing

Publication Analysis

Top Keywords

baf complexes
8
crystal structure
8
baf47
5
structural insights
4
insights baf47
4
baf47 baf155
4
complex
4
baf155 complex
4
complex formation
4
formation mammalian
4

Similar Publications

Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.

View Article and Find Full Text PDF

Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.

View Article and Find Full Text PDF

Argonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.

View Article and Find Full Text PDF

BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.

View Article and Find Full Text PDF

PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

February 2025

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!