AP2 α modulates cystic fibrosis transmembrane conductance regulator function in the human intestine.

J Cyst Fibros

Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, United States; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States. Electronic address:

Published: May 2017

Background: AP2 is a clathrin-based endocytic adaptor complex comprising α, β2, μ2 and σ2 subunits. μ2 regulates CFTR endocytosis. The α subunit interacts with CFTR in the intestine but its physiologic significance is unclear.

Methods: CFTR short circuit current was measured in intestinal T84 cells following shRNA knock down of AP2α (AP2αKD). Clathrin-coated structures (CCS) were immunolabeled and quantified in AP2αKD intestinal Caco2BBe (C2BBe) cells. GST tagged human AP2α appendage domain was cloned and its interaction with CFTR determined by GST pull down assay.

Result: AP2αKD in T84 cells resulted in higher CFTR current (57%) compared to control, consistent with increased functional CFTR and delayed endocytosis. Depletion of AP2α reduced CCS in C2BBe cells. Pull down assays revealed an interaction between human AP2α appendage domain and CFTR.

Conclusion: AP2 α interacts with and modulates CFTR function in the intestine by participating in clathrin assembly and recruitment of CFTR to CCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502754PMC
http://dx.doi.org/10.1016/j.jcf.2017.03.012DOI Listing

Publication Analysis

Top Keywords

cftr
8
t84 cells
8
c2bbe cells
8
human ap2α
8
ap2α appendage
8
appendage domain
8
ap2 modulates
4
modulates cystic
4
cystic fibrosis
4
fibrosis transmembrane
4

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis.

Int J Mol Sci

January 2025

Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.

Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.

View Article and Find Full Text PDF

Purpose: People with sensory impairments (SI) face unique challenges in out-of-home care, especially in oral health (OH) care, compared to the general population. Various assistive technologies (ATs) and media are used to influence OH behaviors and outcomes for individuals with SI. This systematic review (SR) aimed to identify the types of ATs and assess their effectiveness for individuals with SI.

View Article and Find Full Text PDF

Learning from the CFTR modulator baby boom.

J Cyst Fibros

January 2025

Division of Pulmonary/Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA; Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!