A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated optical force sensors using focusing photonic crystal arrays. | LitMetric

Mechanical oscillators are at the heart of many sensor applications. Recently several groups have developed oscillators that are probed optically, fabricated from high-stress silicon nitride films. They exhibit outstanding force sensitivities of a few aN/Hz and can also be made highly reflective, for efficient detection. The optical read-out usually requires complex experimental setups, including positioning stages and bulky cavities, making them impractical for real applications. In this paper we propose a novel way of building fully integrated all-optical force sensors based on low-loss silicon nitride mechanical resonators with a photonic crystal reflector. We can circumvent previous limitations in stability and complexity by simulating a suspended focusing photonic crystal, purely made of silicon nitride. Our design allows for an all integrated sensor, built out of a single block that integrates a full Fabry-Pérot cavity, without the need for assembly or alignment. The presented simulations will allow for a radical simplification of sensors based on high-Q silicon nitride membranes. Our results comprise, to the best of our knowledge, the first simulations of a focusing mirror made from a mechanically suspended flat membrane with subwavelength thickness. Cavity lengths between a few hundred µm and mm should be directly realizable.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.009196DOI Listing

Publication Analysis

Top Keywords

silicon nitride
16
photonic crystal
12
force sensors
8
focusing photonic
8
sensors based
8
integrated optical
4
optical force
4
sensors focusing
4
crystal arrays
4
arrays mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!