High-order dispersion of long-range surface-plasmon-polariton waveguides (LR-SPP-WGs) have been investigated using a two-photon interferometer. Since linear and even-ordered dispersions in two-photon interferometry are cancelled out by a nonlocal quantum correlation, odd-ordered dispersions of millimeter-long LR-SPP-WGs are revealed. Even under the highly dispersive condition, the indistinguishability between two photons emerged from LR-SPP-WGs was well preserved. In addition, we demonstrated a strong polarization-selection by the LR-SPP-WGs that leads to the polarization-stable and high-fidelity quantum interference.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.009490DOI Listing

Publication Analysis

Top Keywords

dispersion long-range
8
long-range surface-plasmon-polariton
8
surface-plasmon-polariton waveguides
8
investigation third-order
4
third-order dispersion
4
waveguides hong-ou-mandel
4
hong-ou-mandel interferometer
4
interferometer high-order
4
high-order dispersion
4
lr-spp-wgs
4

Similar Publications

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

We report the detailed investigation of the magnetic, transport, and magnetocaloric effects of GdS- bSe by magnetic susceptibility χ(T ), isothermal magnetization M (H), resistivity ρ(T, H), and heat capacity Cp(T ) measurements, crystallizing in the ZrSiS-type tetragonal crystal system with space group P 4/nmm. Temperature-dependent magnetic susceptibility measurements revealed long-range antiferromagnetic ordering with two additional magnetic anomalies below N´eel temperature (TN ≈ 8.6 K), corroborated through magnetocaloric and specific heat studies.

View Article and Find Full Text PDF

Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.

View Article and Find Full Text PDF

Neuroblastoma-derived hypoxic extracellular vesicles promote metastatic dissemination in a zebrafish model.

PLoS One

December 2024

Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.

The zebrafish (Danio rerio) is a valuable model organism for studying human biology due to its easy genetic manipulation and small size. It is optically transparent and shares genetic similarities with humans, making it ideal for studying developmental processes, diseases, and drug screening via imaging-based approaches. Solid malignant tumors often contain hypoxic areas that stimulate the release of extracellular vesicles (EVs), lipid-bound structures released by cells into the extracellular space, that facilitate short- and long-range intercellular communication and metastatization.

View Article and Find Full Text PDF

Selective Pressure Influences Inter-Biome Dispersal in the Assembly of Saline Microbial Communities.

Environ Microbiol

December 2024

Ecology of the Global Microbiome-Department of Ecology and Complexity, Centre of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, Spain.

Selection and dispersal are the primary processes influencing community assembly at both global and regional scales. Although the effectiveness of dispersal is often examined within the same biome, microscopic organisms demonstrate the capability to colonise and thrive across different biomes. In this study, we evaluated the relationship between (i) aquatic, (ii) sedimentary and (iii) aerial microbial communities, and how local selective pressures influence the potential impact of inter-biome dispersal, focusing on the salinity gradient stress over time in ephemeral saline lakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!