We investigated the relation between environmental mercury exposure and corticosterone concentrations in free-living adult common loons (Gavia immer). We determined blood and feather mercury concentrations and compared them to testosterone, estradiol, and stress-induced plasma corticosterone concentrations. Although neither testosterone nor estradiol correlated with Hg levels, there was a robust positive relation between blood Hg and stress-induced corticosterone concentrations in males, but not in females. The lack of an effect in females may have been due to overall less contamination in females. There were no significant correlations between feather Hg and stress-induced corticosterone in either sex. To help determine whether Hg had a causal effect on corticosterone, we investigated the impact of experimental Hg intake on the corticosterone stress response in captive juvenile loons. Juveniles were subjected to three different feeding regimes: 0, 0.4 and 1.2μg Hg (as MeHgCL)/g wet weight (ww) fish. We then measured baseline and 30min post-solitary confinement stressor corticosterone concentrations. The Hg fed chicks exhibited a decreased ability to mount a stress response. From these data, we conclude that Hg contamination does appear to alter the corticosterone response to stress, but not in a consistent predictable pattern. Regardless of the direction of change, however, exposure to mercury contamination and the resulting impact on the corticosterone stress response in common loons may substantially impact health, fitness and survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2017.04.030DOI Listing

Publication Analysis

Top Keywords

corticosterone concentrations
16
testosterone estradiol
12
common loons
12
stress response
12
corticosterone
10
stress-induced corticosterone
8
corticosterone stress
8
concentrations
6
mercury
4
mercury correlates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!