In this work, we report a durable and sensitive HO biosensor based on boronic acid functionalized metal-organic frameworks (denoted as MIL-100(Cr)-B) as an efficient immobilization matrix of horseradish peroxidase (HRP). MIL-100(Cr)-B features a hierarchical porous structure, extremely high surface area, and sufficient recognition sites, which can significantly increase HRP loading and prevent them from leakage and deactivation. The HO biosensor can be easily achieved without any complex processing. Meanwhile, the immobilized HRP exhibited enhanced stability and remarkable catalytic activity towards HO reduction. Under optimal conditions, the biosensor showed a fast response time (less than 4s) to HO in a wide linear range of 0.5-3000μM with a low detection limit of 0.1μM, as well as good anti-interference ability and long-term storage stability. These excellent performances substantially enable the proposed biosensor to be used for the real-time detection of HO released from living cells with satisfactory results, thus showing the potential application in the study of HO-involved dynamic pathological and physiological process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2017.04.021 | DOI Listing |
Mikrochim Acta
January 2025
Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.
A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Connecticut, Storrs, CT, USA.
Background: With insight into the elevated levels of phosphorylation of diseased tau, it is believed that specific modifications occur in a time-dependent manner that contribute to tau's role in Alzheimer's disease pathogenesis and progression. Present methods to obtain phospho-tau (p-tau) from post-mortem tissue or recombinantly are insufficient to answer the foremost questions in the field, and there is currently no way to study each disease-relevant modification reproducibly or in isolation. To this point, learning about tau phosphorylation at the resolution of a single modification has been a major obstacle in clarifying whether certain sites are causative of disease or just a by-product of other harmful mechanisms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Tau aggregates, a hallmark of Alzheimer's disease (AD) and other tauopathies, spread throughout the brain, contributing to neurodegeneration. How this propagation occurs remains elusive. Previous research suggests that tau-seed interactors play a crucial role.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Background: The microtubule-associated protein tau is the most commonly misfolded protein in neurodegenerative disorders including Alzheimer's disease and other related tauopathies. These neurological illnesses are hypothesized to share a common mechanism of disease progression, where pathogenic aggregates or 'seeds' of the tau protein function as templates promoting misfolding of functional, soluble tau protein. Under this premise, therapeutic strategies that modulate the seeding cascade, have high potential to interfere with the disease process.
View Article and Find Full Text PDFEur J Dent
December 2024
Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar.
Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!