Toll-like receptor 9 (TLR9) is a major therapeutic target for numerous inflammatory disorders. Development of small molecule inhibitors for TLR9 remains largely empirical due to lack of structural understanding of potential TLR9 antagonism by small molecules and due to the unusual topology of the ligand binding surface of the receptor. To develop a structural model for rational design of small molecule TLR9 antagonists, an enhanced homology model of human TLR9 (hTLR9) was constructed. Binding mode analysis of a series of molecules having characteristic molecular geometry, flexibility and basicity was conducted based on crystal structure of the inhibitory DNA (iDNA) bound to horse and bovine TLR9. Interaction with specific amino acid residues in four leucine rich repeat (LRR) regions of TLR9 was identified to be critical for antagonism by small molecules. The biological validation of TLR9 antagonism and its correlation with probe-receptor interactions led to a reliable model that could be used for development of novel small molecules with potent TLR9 antagonism (IC 30-100 nM) with excellent selectivity against TLR7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.03.086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!