Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long-term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade-long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche-based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.14151 | DOI Listing |
J Health Popul Nutr
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Mersin University, 33000, Mersin, Turkey.
Background: Food neophobia, characterized by the fear of unfamiliar foods, can be influenced by environmental, cultural, and genetic factors, leading to decreased consumption of novel or diverse foods. Understanding the impact of Mediterranean diet adherence and eating disorders on dietary behaviors is crucial, particularly for young adults who are developing lifelong eating patterns.
Methods: The aim of this study was to investigate the relationships among food neophobia, Mediterranean diet adherence, and eating disorders in university students aged 18-24 years.
BMC Public Health
January 2025
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
Background: Urbanization is expanding in Iran, leading to the emergence of three distinct socio-geographical areas: urban, rural, and suburban areas. These different areas may exhibit significant variations in dietary patterns. This study investigates the association between people's place of residence and their consumption of different food groups.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFIntegr Zool
January 2025
Department of Entomology, University of Georgia, Tifton, Georgia, USA.
Selection on body size tends to favor larger males that outcompete smaller males to mate with females, and larger, more fecund females. For many web-building spiders in the Nephilidae family, reproductive success increases with body size, which in turn, is related to diet. The diet of female spiders may overlap with males who share her web, but diet patterns could depend on size if certain males have better access to prey ensnared in the web.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!