Importance: Latent cytomegalovirus (CMV) infection is present in more than half the adult population, and a viral reactivation (ie, when the virus becomes measurable in body fluids such as blood) can occur in up to one-third of these individuals during episodes of critical illness.
Objective: To determine whether antiviral therapy is safe and effective for preventing CMV reactivation in a general population of critically ill patients.
Design, Setting, And Participants: A single-center, open-label, randomized, controlled clinical trial recruited 124 CMV-seropositive patients undergoing mechanical ventilation for at least 24 hours in the intensive care unit between January 1, 2012, and January 31, 2014. The mean baseline Acute Physiology and Chronic Health Evaluation II score of all patients was 17.6.
Interventions: Patients were randomized to receive anti-CMV prophylaxis with valacyclovir hydrochloride (n = 34) or low-dose valganciclovir hydrochloride (n = 46) for up to 28 days to suppress viral reactivation, or to a control group with no intervention (n = 44).
Main Outcomes And Measures: Time to first CMV reactivation in blood within the 28-day follow-up period following initiation of the study drug.
Results: Among the 124 patients in the study (46 women and 78 men; mean [SD] age, 56.9 [16.9] years), viral reactivation in the blood occurred in 12 patients in the control group, compared with 1 patient in the valganciclovir group and 2 patients in the valacyclovir group (combined treatment groups vs control: hazard ratio, 0.14; 95% CI 0.04-0.50). Although this trial was not powered to assess clinical end points, the valacyclovir arm was halted prematurely because of higher mortality; 14 of 34 patients (41.2%) had died by 28 days, compared with 5 of 37 (13.5%) patients in the control arm at the point of the decision to halt this arm. Other safety end points showed similar outcomes between groups.
Conclusions And Relevance: Antiviral prophylaxis with valacyclovir or low-dose valganciclovir suppresses CMV reactivation in patients with critical illness. However, given the higher mortality, a large-scale trial would be needed to determine the clinical efficacy and safety of CMV suppression.
Trial Registration: clinicaltrials.gov Identifier: NCT01503918.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818821 | PMC |
http://dx.doi.org/10.1001/jamainternmed.2017.0895 | DOI Listing |
Obstet Gynecol
January 2025
Medical Practice Evaluation Center, the Division of Infectious Disease, and the Division of Maternal Fetal Medicine, Massachusetts General Hospital, Boston, Massachusetts; the Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada; and the Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York.
The purpose of this review is to serve as an update on congenital cytomegalovirus (CMV) evaluation and management for obstetrician-gynecologists and to provide a framework for counseling birthing people at risk for or diagnosed with a primary CMV infection or reactivation or reinfection during pregnancy. A DNA virus, CMV is the most common congenital viral infection and the most common cause of nongenetic childhood hearing loss in the United States. The risk of congenital CMV infection from transplacental viral transfer depends on the gestational age at the time of maternal infection and whether the infection is primary or nonprimary.
View Article and Find Full Text PDFPLoS Med
January 2025
Division of Infectious Diseases, Department of Medicine II, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany.
Background: Self-reported health problems following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are common and often include relatively non-specific complaints such as fatigue, exertional dyspnoea, concentration or memory disturbance and sleep problems. The long-term prognosis of such post-acute sequelae of COVID-19/post-COVID-19 syndrome (PCS) is unknown, and data finding and correlating organ dysfunction and pathology with self-reported symptoms in patients with non-recovery from PCS is scarce. We wanted to describe clinical characteristics and diagnostic findings among patients with PCS persisting for >1 year and assessed risk factors for PCS persistence versus improvement.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.
View Article and Find Full Text PDFNeuroImmune Pharm Ther
September 2024
Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts.
View Article and Find Full Text PDFJ Virol
January 2025
Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Marek's disease virus (MDV), a highly contagious and oncogenic avian alphaherpesvirus, establishes a latent infection primarily in CD4 T cells. Latent infections are necessary for both persistent lifelong MDV infection and viral tumorigenesis. MicroRNAs (miRNAs) play critical roles as post-transcriptional regulators of viral infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!