Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate a machine learning algorithm that automatically grades age-related macular degeneration (AMD) severity stages from optical coherence tomography (OCT) scans.
Methods: A total of 3265 OCT scans from 1016 patients with either no signs of AMD or with signs of early, intermediate, or advanced AMD were randomly selected from a large European multicenter database. A machine learning system was developed to automatically grade unseen OCT scans into different AMD severity stages without requiring retinal layer segmentation. The ability of the system to identify high-risk AMD stages and to assign the correct severity stage was determined by using receiver operator characteristic (ROC) analysis and Cohen's κ statistics (κ), respectively. The results were compared to those of two human observers. Reproducibility was assessed in an independent, publicly available data set of 384 OCT scans.
Results: The system achieved an area under the ROC curve of 0.980 with a sensitivity of 98.2% at a specificity of 91.2%. This compares favorably with the performance of human observers who achieved sensitivities of 97.0% and 99.4% at specificities of 89.7% and 87.2%, respectively. A good level of agreement with the reference was obtained (κ = 0.713) and was in concordance with the human observers (κ = 0.775 and κ = 0.755, respectively).
Conclusions: A machine learning system capable of automatically grading OCT scans into AMD severity stages was developed and showed similar performance as human observers. The proposed automatic system allows for a quick and reliable grading of large quantities of OCT scans, which could increase the efficiency of large-scale AMD studies and pave the way for AMD screening using OCT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.16-20541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!